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Executive Summary 

 

This toxicological profile on bisphenol A (BPA) describes its effects on freshwater and marine life, 

humans, and laboratory animals.  Human exposure to BPA—due to its widespread use, along with 

reproductive and developmental effects reported in animal studies—has generated considerable 

attention on this chemical in recent years.  

Use and Exposure  

BPA is a synthetic chemical, most notably used as a component in the production of: 

o Polycarbonate plastic, used in a wide variety of products, including baby and water bottles, 

sports equipment, medical devices, CDs, and household electronics.  These plastics are 

typically clear and rigid and marked with the number ―7‖ or the letters "PC" near the recycle 

symbol.   

o Epoxy resins, used as coatings to line the inside of food and beverage cans to prevent the 

contents from reacting with the metal.   

o Certain polymers used in dental sealants or composites. 

Most human exposures to BPA result from its use in food and beverage containers.  BPA can leach 

into food from containers lined with epoxy resin coatings, and from polycarbonate plastic products.  

Warming the plastic, such as in a microwave, increases the leaching of BPA into liquids; temperature 

appears to be a more important factor in leaching than the age of the container 

Environmental Occurrence 

BPA has been found in lakes, rivers, and the ocean, as well as in sediments and soils.  BPA in water 

bodies is most frequently the result of its presence in municipal wastewater discharges and in leachate 

from landfills.  While most reported levels in fresh water are low, <1 µg/L, some of the higher levels 

reported in the environment have caused adverse effects in laboratory experiments.  No data are 

available on BPA levels in California marine waters, however, studies conducted around population 

centers have found BPA at concentrations nearing the Lowest Observed Effect Levels (LOEL).  

Further research is needed to assess where environmental levels of BPA are likely to cause adverse 

effects to marine organisms. 

Effects on Aquatic Life 

Laboratory studies show BPA causes developmental and reproductive effects in aquatic animals, 

including fish and shellfish.  Reproductive and developmental effects reported include:   

 Reduction of male hormones in turbot  

 Death of testicular cells in swordtails  

 Inhibition of spermatogenesis and egg production in fathead minnows, and decreased 

hatchability of their larvae   

 Decreased sperm density and motility in brown trout, along with delayed or absent ovulation   

 Fewer eggs and hatchlings in medaka (small experimental fish); embryos were deformed and 

some had gonads with both male and female elements   
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 Feminization in both sexes of frogs   

 Yolk-sac hemorrhages and edema in Atlantic salmon 

 Malformations in tadpoles  

A variety of other toxic effects have also been noted. 

Health Hazard and Toxicity in Humans and Laboratory Animals 

 Reproductive and Developmental Effects.  The major concern about health effects from 

exposure to BPA relates to its estrogen-like activity.  Estrogens are a group of steroid 

compounds which function as the primary female sex hormone.  Sex hormones influence 

sexual differentiation, and altered levels of the hormones can have serious effects.  Studies in 

laboratory animals exposed during development (i.e., in utero or as immature animals) provide 

evidence of BPA’s effects on the reproductive system, including: 

o Altered mating behavior, maternal behavior, and sex-differentiated emotional and cognitive 

behavior  

o Enhancement or stimulation of breast growth in female animals  

o Stimulation of prostate growth in male animals    

There is some evidence that BPA has effects on the reproductive ability of adult laboratory 

animals. Effects on the reproductive system have been observed in adult female and male 

rodents.    

 Cancer.  No information that BPA causes cancer in humans was found, and there is limited 

information on its potential to cause cancer in animals.  The one long-term animal study 

reported did not find convincing evidence that BPA caused cancer in rats or mice.  However, 

there are some animal studies to suggest further research is needed. 

 Obesity.  Information of BPA’s influence on human obesity is sparse.  In animal and cell 

studies, BPA was found to influence multiple processes related to obesity.    

 Effects on the thyroid.  While evidence from animal and cell studies indicates that BPA can 

affect the thyroid, conflicting findings have been reported.  No information was found for any 

effects of BPA on the human thyroid.  

 Immune system effects.  BPA has also been shown to affect the immune system of 

experimental animals, diminishing its ability to mount a protective response against infections.  

 Nervous system effects.  Animal and cell studies show that BPA can affect brain development 

in areas linked with learning, memory and a variety of behavioral traits.  There is concern that 

BPA might be a factor in the development of human neurological disorders such as attention-

deficit/hyperactivity disorder (ADHD) and memory loss, but there is no information on these 

effects in humans.   
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Summary Table  

This table provides some idea of the availability of information on the toxicology of BPA for the 

endpoints and organisms identified.  It also provides some sense of the evidence available in that 

information can be used to determine if the endpoint effect does or does not occur.  If there is no 

information the evidence column will be marked with a ―--.‖  

Health Effect Human Lab Animal Aquatic Life 

 Information Evidence Information Evidence Information Evidence 

Reproductive       

 male N -- S* S* Su Su 

 female L L S* S* Su Su 

Developmental  N -- Su Su Su Su 

Cancer N -- S S N -- 

Immunological  N -- Su Su N -- 

Neurological N -- Su Su   

Other Chronic effects     Su Su 

 Thyroid N -- S S L L 

 Obesity L L S S   

Acute     Su Su 

* This information and evidence is for adult animals.  Reproductive effects occurring in prenatal and immature animals are 

considered under Developmental Health Effects. 
 

N = None S = Some 

L = Little Su = Sufficient 

These rating categories are qualitative in nature and designed to give the reader a general sense of the availability and strength 

of the information. 
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Abbreviations 
 

ADHD attention-deficit hyperactivity disorder 

AGD anogenital distance 

ANOVA analysis of variance 

ATP adenosine triphosphate 

ATPase adenosine triphosphatase 

AWQC ambient water quality criteria 

BCF bioconcentration factor 

BMI body mass index 

BPA bisphenol A (4,4'-dihydroxy-2,2-diphenylpropane 

11 β-HSD β-hydroxysteroid dehydrogenase 

cAMP cyclic adenosine monophosphate 

CA1 Cornu Ammonis zone 1 

CA3 Cornu Ammonis zone 3 

CERHR Center for the Evaluation of Risks to Human Reproduction 

CG chorionic gonadotropin  

ChAT choline acetyltransferase 

CHO chinese hamster ovary 

Con A concanavalin A 

Dn dopamine-n receptor 

DART developmental and reproductive toxicities 

DES diethylstilbestrol 

DNA deoxyribonucleic acid 

ECDs endocrine disrupting chemicals 

2-EH 2-ethylhexanol 

ER estrogen receptor 

ERL environmental risk limit 

ERR estrogen related receptor 

FSH follicle-stimulating hormone 

GLUT4 insulin-regulated glucose transporter found in adipose tissues 
hCG β-human chorionic gonadotropin 

HD high dose 

HPOA hypothalamic/preoptic area 

ICI ICI 182,780 (Faslodex) from AstraZeneca 

IFN interferon 

IgE immunoglobulin E 

IgG immunoglobulin G 

IL interleukin 

iNOS inducible nitric oxide synthase 

KO knockout 

LC50 lethal concentration to 50 percent of the population 

LD low dose 

LD50 lethal dose to 50 percent of the population 

LH luteinizing hormone 

LOEC lowest observed concentration 
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LOELs lowest observed effect levels 

LPS lipopolysaccharide 

LTD long-term depression 

LTP long-term potentiation 

MCP-1 monocyte chemoattractant protein-1 

mER estrogen membrane receptor 

MIF migration inhibitory factor 

MIP-1α  macrophage inflammatory protein-1α 

µM micromolar 

MPP+ 1-methyl-4-phenylpyridinium ion 

NADPH -nicotinamide adenine dinucleotide phosphate 

ncmER non-classical membrane estrogen receptor 

NIS sodium/iodide symporter 

nM nanomolar 

NO nitric oxide 

NOEC no observed effect concentration 

NOELs no observed effect levels 

OEHHA Office of Environmental Health Hazard Assessment 

OPC California Ocean Protection Council 

PCBs polychlorinated biphenols 

p.f. post-fertilization 

PKC protein kinase C 

PND postnatal day 

PPAR-γ peroxisome proliferators-activated receptor-γ 

PPB parts per billion 

PVC polyvinyl chloride 

mRNA messenger ribonucleic acid 

SDN-POA sexually dimorphic nucleus of the medial preoptic area 

SEB Staphylococcus enterotoxin B 

SHBG sex hormone-binding globulin 

SLE systemic lupus erythematosus 

T3 triiodothyronine 

T4 thyroxine 

THs thyroid hormones 

Th1 T helper cell1 

Th2  T helper cell2 

TLR Toll-like receptors 

TNF tumor necrosis factor 

TRs thyroid hormone receptors 

TRα thyroid hormone receptor-  

TRβ thyroid hormone receptor-  

TSH thyroid stimulating hormone 

VTA ventral tegmental area 

VTG vitellogenin 
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Introduction  
 

On February 8, 2007, the California Ocean Protection Council (OPC) passed a resolution, ―On 

Reducing and Preventing Marine Debris.‖  Scientists are investigating whether constituents leach 

out of plastic products in the marine environment and present a threat to the health of wildlife 

and humans.  The OPC has asked the Office of Environmental Health Hazard Assessment 

(OEHHA) to prepare toxicity profiles characterizing certain chemical constituents of plastics that 

may be harmful to marine life and humans.  In preparing this profile, OEHHA reviewed reported 

information on the adverse effects of exposure to BPA in aquatic organisms in the laboratory and 

in the ambient environment, humans, and experimental laboratory animals.   

 

Properties and Uses 

 
BPA (CAS number 80-05-7) is a synthetic chemical that, because of its structure, has many uses.  

The bisphenol A (4, 4’-dihydroxy-2, 2-diphenylpropane) (BPA) molecule comprises two phenol 

rings connected by a methyl bridge, with two methyl groups attached to the bridge (Figure 1).   

 

CH
3

CH
3

HO OH

 
 Figure 1:  BPA structural formula 

 

Properties of BPA are listed in Table 1. 

 

 Table 1: Bisphenol A properties (based on Staples (1998)) 

 

PROPERTY VALUE 

Molecular weight 228 gm/mole 

Empirical formula (CH3)2C(C6H4OH)2 

Specific gravity 1.09-1.19 gm/cm
3
 

Boiling point 398 °C 

Melting point 150-155 °C 

BCF 5-68 

Solubility 120-300 mg/L @ ph7 

Log Kow 3.4 (3.3-3.8) 

T ½ water & wastewater 2.5-4 days 

Vapor pressure 8 E
-10

 – 4 E
-7

 mm Hg 

Henry’s constant 10
-10

 Atm-m
3
/mol 

POTW effluent  8-25 µg/L 

Bioconcentration factor 5 – 68 

Biodegradation  76-95% in 28 days 

POTW treatment efficiency 92-99.8%  
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PROPERTY VALUE 

Effluent seed t ½  3 days 

Receiving stream seed t ½ 2.5 days 

Photodegradation in water Limited 

Photo-oxidation in water t ½ = 6 -160 days 

 

Most domestically produced BPA is used as an intermediate in the production of polycarbonate 

and epoxy resins, flame retardants, and other specialty products.  Final products include powder 

paints, adhesives, protective coatings, automotive lenses, protective window glazing, building 

materials, compact disks, optical lenses, thermal paper, paper coatings, as a developer in dyes, 

and for encapsulation of electrical and electronic parts.  BPA is also used in some polymers used 

in dental sealants or composites.  

Polycarbonate plastic is used to make a variety of common products, including baby and water 

bottles, sports equipment, and medical devices.  These plastics, which are typically clear and 

rigid, are marked with the recycle symbol ―7‖ or the letters "PC" near the recycle symbol.  Epoxy 

resins are used as coatings to line the inside of almost all food and beverage cans to prevent the 

contents from reacting with the metal.  BPA can migrate into foods from cans and from 

polycarbonate plastic products such as baby bottles, tableware, and food containers.  The use of 

BPA in food and beverage containers accounts for the majority of daily human exposure; 

estimated human consumption of BPA from epoxy-lined food cans alone was 6.6 µg/person-day 

(Howe and Borodinsky, 1998).  Warming the plastic, such as in a microwave, increases the 

leaching of BPA into liquids; temperature appears to be a more important factor in leaching than 

the age of the container. 

 

Environmental Contamination  

The primary route of BPA contamination in the aquatic environment is effluent from wastewater 

treatment plants and landfill sites (Kang et al., 2007a).  Wastewaters from kraft pulp, printing 

paper, and packing-board paper plants contain high concentration of BPA (Rigol et al., 2004).  

BPA was also found in wastewater from waste paper recycling plants, which use thermal and 

printing paper as raw material (Fukazawa et al., 2001; Rigol et al., 2002).  Migration from BPA-

based products is closely related to BPA contamination of domestic sewage (Kang et al., 2007b; 

Yamamoto and Yasuhara, 1999).  Effluents containing BPA after leachate treatment are a source 

of BPA contamination in the aquatic environment (Yamamoto et al., 2001).  BPA levels in 4 

landfill leachates ranged from 15 to 5400 μg/L; after treatment, levels in the effluent ranged from 

0.5 to 5.1 μg/L (Yamamoto et al., 2001).  Treatment plants were reported to be 37 to 94 percent 

effective in removing BPA from the waste stream (Fuerhacker, 2003; Kang et al., 2007a).  

Although BPA levels in river water near wastewater treatment plants or landfills can be high, 

degradation and dilution result in declining levels with increasing distance from the source (Kim 

et al., 2004).  BPA can migrate from BPA-based products into the aquatic environment and can 

leach into water from plastic wastes.  Yamamoto and Yasuhara (1999) reported that BPA 

leached from waste plastics, such as polyvinyl chloride (PVC) products and synthetic leather, 

reaching aqueous concentrations of 1.98–139 μg/L.  BPA migration from PVC hoses used for 

drainage, watering and sprinkling ranged from 4 to 1730 μg/L (Yamamoto et al., 2001).  BPA 

leached into the water from an epoxy-resin tank, reaching a concentration of 7.8 µg/L (Yeo and 

Kang, 2006).   
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BPA has been investigated in marine waters in one study.  At 28 locations around the Singapore 

coastline BPA was detected in most samples with a maximum concentration of 2.47 µg/L found 

at one site while > 70 % of the samples from other locations contained less than 0.4 µg/L 

(Basheer et al., 2004).  The mean maximum concentration is higher than most of those reported 

from the freshwater locations; however, it is known that BPA persists longer in seawater than in 

freshwater.  

BPA in surface river water can be adsorbed to sediments, based on the Koc values (314–1524) 

for BPA (Howard, 1989).  BPA levels in river water in the United States, Germany, Japan, 

Spain, China, and the Netherlands, were 21 μg/L or less, while levels in sediment were generally 

higher than in water, ranging from <0.5 to 1630 μg/kg (Table 2).  BPA in anaerobic or semi-

aerobic sediment environments can persist for a prolonged period of time.  BPA in spiked river 

samples was greater than 90 percent biodegraded under aerobic conditions, but less than 10 

percent decrease in BPA was found under anaerobic conditions after 10 days.  Since BPA 

persists longer in seawater than freshwater, BPA contamination is potentially higher in marine 

than in freshwater organisms. (Kang et al., 2007a).   

Of the 76 Lowest Observed Effect Levels (LOEL) discussed in this report, 11 (14 percent) were 

1 µg/L or less and 15 (20 percent) were 5 µg/L or less; this group included effects in mollusks, 

arthropods, fish, and frogs.  Together, these data indicate that environmental BPA concentrations 

of 5 µg/L or less induce adverse effects in multiple classes of vertebrates and invertebrates.  

Most of the effects identified at the lowest environmental concentrations are reproductive or 

developmental effects.  

Crain et al (2007) reviewed the environmental concentrations and possible environmental effects 

of BPA.  They concluded that most measured concentrations in the environment are below levels 

associated with adverse effects on aquatic organisms.  However, occasionally environmental 

concentrations as high as 25 µg/L have been measured, particularly near point sources such as 

outfalls from pulp mills, sewage treatment plants, or landfills.  These levels exceed the lowest 

effect concentrations in aquatic organisms (Appendix 1) and thus could potentially cause some 

adverse effects on aquatic ecosystems.   

Crain et al (2007) summarize these data graphically, showing measured environmental 

concentrations and reported chronic values (geometric mean of LOEL and No Observed Effect 

Levels (NOEL)) on the same axes, with concentration as the ordinate and chronic values as the 

abscissa.  This presentation shows that 80% of the measured environmental concentrations 

exceed the lowest reported chronic value, and that about 30% of the measured environmental 

concentrations exceed the 20
th

 percentile chronic value.  This supports the conclusion that some 

of the more sensitive species could be affected at upper-end environmental concentrations of 

BPA.  Unfortunately, most of the environmental concentration data are from fresh water systems.  

It would be useful to gather data on BPA prevalence in marine environments, especially near 

municipal and industrial outfalls, landfills, and other possible point sources of BPA. 
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Table 2:  BPA levels in water and sediment 

Water (µg/L)  

Sediment 

(µg/kg)  Country  References * 

  0.0005 – 0.014  no data Germany  (Kuch and Ballschmiter, 2001) 

  0.0005 – 0.41  10 - 190  Germany  (Fromme et al., 2002) 

<0.001 2.1 Venice lagoon (Pojana et al., 2007) 

<0.001 60 Venice lagoon (Pojana et al., 2007) 

  0.0035 118 Venice lagoon (Pojana et al., 2007) 

  0.0035 25 Venice lagoon (Pojana et al., 2007) 

<0.002 – 2.47 no data Singapore (Basheer et al., 2004) 

  0.004 – 0.092  10 - 380  Germany  (Stachel et al., 2003) 

<0.005 – 0.08  <0.5 - 13  Japan  (Kawahata 2004)  

<0.0088 – 1  <1.1 - 43  Netherlands  (Vethaak et al., 2005) 

  0.009 – 0.776  66 - 343  Germany  (Heemken et al., 2001) 

  0.01 – 1.4  no data Japan  (JMC, 1999)  

  0.01 – 1.9  no data Japan rivers (Staples et al., 1998) 

<0.012 – 21  no data Netherlands  (Belfroid et al., 2002)  

  0.02 – 0.03  0.11 - 48  Japan  (Hashimoto et al., 2005)  

  0.02 – 0.15  no data Japan  (Takahashi et al., 2003) 

  0.03 – 0.083  no data China  (Jin et al., 2004)  

<0.05 – 0.272  <0.5 - 15  Germany  (Bolz et al., 2001) 

<0.05 – 1.51  no data Spain  (Cespedes et al., 2006) 

<0.09  no data Japan  (Matsumoto et al., 1977) 

≤0.119  no data Rhine River (Staples et al., 1998) 

<0.2 – 1.9  no data Japan  (Matsumoto, 1982) 

<0.5 – 0.9  no data Japan  (Kang and Kondo, 2006)  

<1 – 8  no data United States  (Staples et al., 2000)  

   8 – 25 no data US POTW effluent (Staples et al., 1998) 

no data <5 - 1630  Germany  (Stachel et al., 2005) 

no data 0.6 - 3.8  China  (Peng, 2006) 

no data 204  Osan Bay, Korea (Koh et al., 2002) 

* underlined references are secondary references cited in (Kang et al., 2007a) 

 

Environmental Fate, Transport, and Bio-uptake 

This section describes what happens to BPA when it enters aquatic environments. Table 3 

summarizes the environmental and bio-uptake data.  McKay level 1 modeling, which estimates 

the distribution of a contaminant in different environmental compartments, predicted about 25 

percent of an environmental release of BPA would be found in soil, 25 percent in sediment and 

50 percent in water with less than 1 percent in biota (Staples et al., 1998).  Plants can rapidly 

absorb BPA through their roots from water and metabolize it to several glycosidic compounds.  

Glycosylation, the main route of BPA metabolism in plants, leads to loss of estrogenicity of the 

parent compound.  BPA mono- and di-b-D-glucopyranosides show reduced or no estrogenic 

activity in in vitro tests (Morohoshi et al., 2003).  Two oxidative enzymes, peroxidase and 

polyphenol oxidase, are associated with BPA metabolism (Kang et al., 2007a; Kang et al., 2006).  
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Photolysis and photo-oxidation are the main non-biological pathways of BPA breakdown in the 

aquatic environment.  Photodegradation of BPA is slow in pure water, but can be accelerated in 

the presence of:  a) dissolved organic matter, including humic and fulvic acid (Chin, 2004; Peng, 

2006; Zhan, 2006), b) reactive oxygen species, including hydroxyl radicals, peroxyl radicals and 

singlet oxygen (Sajiki, 2002; Sajiki, 2003; Zhan, 2006), and/or c) ions, including ferric and 

nitrate ions (Peng, 2006; Zhan, 2006; Zhou, 2004).  In artificial indoor streams, DT50 values 

(time when 50% of initial BPA disappeared) were about 1 day (Licht et al., 2004) 

BPA has been found in a number of market seafood species.  In Singapore, Basheer et al. (2004) 

found 13.3 – 213.1 µg/kg ww of BPA in prawn, crab, blood cockle, white clam, squid, and fish 

purchased from local supermarkets, indicating the potential for human exposure by eating 

contaminated seafood. 

Zebrafish initially eliminated parent BPA with a hafe-life of 1.1 hours; a second phase had a 

half-life of 39 hours (Lindholst et al., 2003).  Metabolites included sulfate and glucuronic acid 

conjugates.  

The bacterium Pseudomonas paucimobilis FJ-4 rapidly biodegraded BPA to less toxic 

metabolites.  The parent compound was undetectable by 12 hours of incubation.  Total organic 

carbon was reduced by 85 percent within 48 hours (Ike et al., 2002). 

 

Table 3:  Bio-uptake and Bioconcentration 

 

Organism or 

Tissue 
Water (µg/L) 

Tissue 

(µg/kg) 

Bioconcentration 

Factor 
Reference* 

Periphyton 0.02 - 0.15 2-8.8 18-650 (Takahashi et al., 2003) 

Benthos 0.02 - 0.15 0.3-12 8-170 (Takahashi et al., 2003) 

Fish liver <0.01 – 0.33 
2 – 75 

(DW) 
 (Belfroid et al., 2002) 

Fish muscle <0.1 – 0.33 
1 – 11 

(DW) 
 (Belfroid et al., 2002) 

fish <.18 1-6 (DW)  (Belfroid et al., 2002) 

Rainbow trout 

(Oncorhynchus 

mykiss) 

  5-68 
(Lindholst et al., 2000)  

(Staples et al., 1998) 

Rainbow trout 

(Oncorhyncus 

mykiss) 

100 271-357 2.7 – 3.6 

(Lindholst et al., 2003) 

Zebrafish 

(Danio rerio) 
100 569 5.7 

FW clam 

(Pisidium 

amnicum) 

  110-144 (Heinonen et al., 2002) 

Salmon (Salmo 

salar) fry 
  94-182 (Honkanen et al., 2004) 

Prawn (Penaeus 

monodon) 
<0.002 – 2.47 13  (Basheer et al., 2004) 

Crab (Portunus <0.002 – 2.47 213  (Basheer et al., 2004) 
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Organism or 

Tissue 
Water (µg/L) 

Tissue 

(µg/kg) 

Bioconcentration 

Factor 
Reference* 

pelagicus) 

Blood cockle 

(Anadara 

granosa) 

<0.002 – 2.47 57  (Basheer et al., 2004) 

White clam 

(Meretrix 

meretrix) 

<0.002 – 2.47 27  (Basheer et al., 2004) 

Squid (Loligo 

sp.) 
<0.002 – 2.47 119  (Basheer et al., 2004) 

Indian scad fish 

(Decapterus 

russelli) 

<0.002 – 2.47 66  (Basheer et al., 2004) 

Frog (Rana 

temporaria) 
1.8 250 140-164 (Koponen et al., 2007) 

* (underlined references are secondary references cited in (Kang et al., 2007a) 

 

Toxicology:  Marine and Other Aquatic Organisms 

Reproductive and Endocrine Toxicity 

As noted in the summary table, there is sufficient qualitative information on reproductive and 

developmental toxicity of BPA to aquatic organisms.  Crain et al. (2007) reviewed the 

environmental toxicology of Bisphenol A (BPA), concluding that BPA can disrupt the endocrine 

system of a variety of species at environmentally relevant concentrations of 21 µg/L or less.  

Reported male reproductive effects include:  apotosis of testicular cells in swordtail freshwater 

fish (Kwak et al., 2001), inhibition of gonadal growth and spermatogenesis in fathead minnows 

(Sohoni et al., 2001), decreased sperm density & motility in brown trout (Lahnsteiner et al., 

2005), reduction of testosterone and 11-ketotestosterone in turbot (Labadie and Budzinski, 

2006), and induction of an intersex condition known as ―testis–ova‖ in medaka (Metcalfe et al., 

2001).  Exposure levels for these studies are reported in Appendix 1.  Additionally, when male 

medaka were exposed to 10 µmol/L BPA and placed with fertile females, reduced number of 

eggs and hatchlings were observed; no significant decreases were observed at BPA 

concentrations of 0.3, 1 and 3 µmol/L (Shioda and Wakabayashi, 2000)..   

Reported female reproductive effects include:  inhibition of gonadal growth and egg production 

in fathead minnows (Sohoni et al., 2001), decreased hatchability of in flathead minnow larvae 

(Sohoni et al., 2001), delay in, or complete cessation of ovulation in brown trout (Lahnsteiner et 

al., 2005), reduced number of eggs and hatchlings in medaka (Shioda and Wakabayashi, 2000), 

induction of Atlantic salmon eggshell zona radiata protein (Arukwe et al., 2000), and increased 

choriogenin mRNA expression in medaka (Tyl et al., 2002).  Choriogenin is a precursor to the 

formation of the protein subunits of the zona radiata.  BPA exposure at 59 µg/L for 3 weeks led 

to an elevation of estrone level in turbot (Labadie and Budzinski, 2006).  High concentrations of 

BPA may have both morphological and histological effects on salmon yolk-sac fry; at three 

concentrations (10, 100 and 1000 µg/L) changes in behaviour, morphology and histological 

structure were observed including fluid accumulation (oedema) in the yolk sac and haemorrhages 
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in the front part of the yolk sac and in the head around the gill arches at 1000 µg/L (Honkanen et 

al., 2004). Perturbations in markers of early development also have been observed in zebrafish 

(Kishida et al., 2001), and embryo lesions and deformities have been observed in medeka at 200 

µg/L (Pastva et al., 2001).  Effects on the offspring include embryo lesions and deformities at 

200 µg/L, and yolk-sac hemorrhages and edema at 1000 µg/L (Honkanen et al., 2004 ; Kishida et 

al., 2001; Pastva et al., 2001 ).   

The vitellogenin (VTG) assay is a frequently used in vivo biomarker for estrogenicity in 

oviparous vertebrates (Heppell et al., 1995; Lattier et al., 2001).  BPA induces synthesis of VTG 

and other proteins in multiple species at concentrations ranging from 59 to 2000 µg/L (Arukwe 

et al., 2000 ; Brian et al., 2005; Kang et al., 2002 ; Kashiwada et al., 2002 ; Kwak et al., 2001; 

Lindholst et al., 2000 ; Rankouhi et al., 2004; Sohoni et al., 2001 ; Tabata et al., 2004 ; Van den 

Belt et al., 2003).  VTG is a large (molecular mass 250–600 kD), complex, calcium-binding 

phospholipoglycoprotein required for normal oocyte maturation in developing females (Matozzo 

et al., 2007).  It is produced in the liver in response to estrogen stimulation, secreted in the blood, 

and transported to the oocyte, where it is incorporated as constituents of the yolk.  Being 

estrogen-dependent, VTG production is normally restricted to females; little if any VTG can be 

detected in males or sexually immature females.  However, males do carry the VTG gene and 

exposure to estrogens can trigger its expression (Sumpter and Jobling, 1995).  VTG can be 

measured in the liver, blood, and mucus from male and female fish as well as in primary 

hepatocyte cultures (Navas and Segner, 2006).    

BPA at concentrations as low as 0.01 µmol/L for 120 days has caused feminization in tadpoles of 

both sexes of clawed frogs (Xenopus laevis) (Kloas et al., 1999; Levy et al., 2004).  Liver 

vitellogenin mRNA was induced in male frogs (Bombina orientalis) (Gye and Kim, 2005).  

Complete sex reversal has been observed in caimen exposed to 140 mg/L BPA which is within 

the solubility of BPA but higher than any levels reported in the environment (Stoker et al., 2003).   

Gonadal resorption has been reported in mussels exposed to 50 μg/L BPA for 3 weeks 

(Cajaraville and Ortiz-Zarragoitia, 2006; Ortiz-Zarragoitia and Cajaraville, 2006).  In male 

freshwater snails (Marisa cornuarietis) and in marine dogwhelks (Nucella lapillus), BPA at 

concentrations ranging from 1 to 100 µg /L for 5 months has caused reductions in the size of the 

penis and prostate and decreased mature sperm in the vesicula seminalis (Oehlmann et al., 2000).  

In female Marisa snails, enlarged accessory pallial sex glands, increased oocyte production, 

superfemales, and oviduct malformations have been reported at concentrations as low as 1 µg 

BPA/L (Oehlmann et al., 2006; Oehlmann et al., 2000). Superfemales are characterized by the 

formation of additional female organs, enlarged accessory sex glands, gross malformations of the 

pallial oviduct, and a stimulation of egg and clutch production, resulting in increased female 

mortality.  Conversely, no differences in the number of eggs per female per month, the 

percentage of eggs hatching successfully, or difference in time to hatching between unexposed 

Marisa snails and snails exposed to concentrations of 0.1, 1, 25, and 640 μg/L for six months 

were found (Forbes et al., 2008).  In mudsnails (Potamopyrgus antipodarum), induction of 

unshelled embryos and embryo production have been reported when exposed to 30 – 300 µg/kg 

dw in sediment (Duft et al., 2003; Jobling et al., 2003; Jobling and Tyler, 2003).   

BPA concentrations of 20 µg/L for 10 days induced maturation of reproductive organs and egg 

production in female copepods, small crustaceans found in marine and freshwater habitats.  

Similar effects were seen at concentrations of 2 and 0.2 µg/L, but they were not statistically 

significant at these levels (Andersen et al., 1999).  Long-term exposure of the copepod Tigriopus 

http://en.wikipedia.org/wiki/Crustacean
http://en.wikipedia.org/wiki/Fresh_water
http://en.wikipedia.org/wiki/Habitat_%28ecology%29
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japonicus to 0.1, 1.0 and 10 µg/L BPA caused a significant delay in completion of the naupliar 

stages compared to the controls in the parental generation, and at 0.01 µg/L and above in the F1 

generation (Marcial and Snell, as reviewed by (Crain et al., 2007)).  BPA concentrations as low 

as 0.08 µg/L delayed emergence of F2 male and female midges Chironomus riparius (Watts et 

al., 2001a).  At 10,400 µg/L BPA, it completely inhibited egg hatching and emergence of the F2 

generation.  The sperm and eggs of sea urchins (Paracentrotus lividus) were exposed to BPA 

concentrations of 300–3500 µg/L under static conditions.  The 300 µg/L BPA concentration 

resulted in reduced fertilization, reduced growth, and an increased number of larvae with skeletal 

malformations while a significant decreased percentage of fertilized eggs was not observed until 

greater than  1000 µg/L; results of the study indicate that that the BPA has less effects on 

fertilization success of sperms while the decreased offspring quality of exposed sperms is more 

important from the ecotoxicological point of view. (Ozlem and Hatice, 2008).  In freshwater 

sponges, (Hill et al., 2002) reported abnormal growth at 16,000 µg/L BPA for 6 days, and at 

even higher concentrations, complete inhibition of germination.  Fukuhori et al. (2005) reported 

suppression of testis formation and sexual reproduction and induction of asexual reproduction in 

hydra when exposed to 500–3000 µg/L BPA for 35 days.  However, the concentrations used in 

these experiments are not likely to be environmentally relevant. 

Other Toxic Effects 

As noted in the summary table, there is sufficient qualitative information on acute and chronic 

toxicity of BPA to aquatic organisms.  There is no information on immunotoxicity or 

carcinogenisis.  BPA can reduce survival and growth in teleost (bony) fish (Kishida and Callard, 

2001; Sohoni et al., 2001; Yeo and Kang, 2006).  In goldfish it reduces calcitonin secretion and 

plasma calcium levels, while suppressing tartrate-resistant acid phosphatase and alkaline 

phosphatase b (Suzuki and Hattori, 2003; Suzuki et al., 2003a).  Other findings include stained 

fragments in hepatocyte nuclei and chromosomal damage in erythrocytes (Bolognesi et al., 2006; 

Honkanen et al., 2004).   

In Xenopus laevis larvae, 10-25 µmol/L BPA for 21 days suppressed thyroxin receptor β gene 

expression.  This may explain the suppressed spontaneous and thyroxin-induced metamorphosis.  

Other findings in Xenopus laevis embryos and tadpoles include malformation and apoptosis of 

central nervous system cells, scoliosis, short body length, flexure, edema, and abnormal gut 

coiling, microcephaly and other malformations of the head, and up to 75 percent mortality 

(Iwamuro et al., 2003; Oka et al., 2003).  Similarly, BPA reduced expression of preprotemporin-

1TGb and 1Tga genes, resulting in inhibition of thyroid hormone activity, induction of thyroxine, 

developmental malformations, and up to 90 percent mortality in Rana sp. tadpoles (Koponen et 

al., 2007; Ohnuma et al., 2006; Yang et al., 2005 ).  

In the mussel, Mytilus galloprovincialis, BPA (25 nM nominal concentration in the hemolymph) 

lead to a significant lysosomal membrane destabilization (LMS), indicating BPA-induced stress 

conditions in the hemocytes, whereas lower concentrations were ineffective (Canesi et al., 2005). 

The NOEC for BPA in terms of LMS was 1 µM and the LOEC was 5 µM (Canesi et al., 2007). 

BPA also induced significant changes in the phosphorylation state of MAPK and STAT 

members, indicating that BPA can affect kinase-mediated cell signaling (Canesi et al., 2005) and  

decreased serine phosphorylation of a CREB-like protein in mussel hemocytes (Canesi et al., 

2005); CREB isoforms have been identified in invertebrates in relation to its role in neuronal 

plasticity and learning. At the organismal level, BPA inhibited regeneration in isolated digestive 

regions in hydra at relatively high concentrations (> 460 µg/L) (Pascoe et al., 2002) and in 
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chironomids caused mouthpart deformities at as little as 0.01 µg/L and reduced weight and 

delayed molting at 1000 µg/L (Watts et al., 2003).    

Summary and Aquatic Hazard Assessment 

Toxic effects of BPA in aquatic organisms are summarized in Appendix 1.  Most of these studies 

are short-term laboratory studies involving a single species.  Experiments conducted with 

environmentally relevant concentrations of BPA resulted in observed effects in medaka, brown 

trout, zebrafish, mollusks, and copepods.  BPA induces endocrine manifestations, malformations, 

changes in growth, chromosomal damage, biochemical changes and, at sufficiently high 

concentrations, mortality.  Most of the effects identified at the lowest environmental 

concentrations are reproductive or developmental effects; there are adequate data to support the 

conclusion that BPA is a reproductive toxicant in the aquatic environment.  The potential for 

adverse effects at lower aqueous concentrations when the exposure is longer-term and/or via the 

food web remain largely unexplored.  Adverse effects in benthic organisms have not been well 

studied.  Benthic (sediment-dwelling) organisms are likely to receive much higher exposures, 

since BPA concentrations are higher in sediment than in the water column.   

 

Human and Laboratory Studies 

Reproductive and Developmental Effects 

Introduction 

Endocrine disruptors cause adverse health effects in humans and wildlife subsequent to changes 

in endocrine function.  BPA is among the chemicals identified as a potential endocrine disruptor 

based on its estrogenic properties.  Studies in laboratory animals have focused on understanding 

the consequences of BPA for estrogenic activity, taking into account the variety of estrogen 

receptors (ER) and estrogen binding molecules and their functions in different reproductive 

processes and different stages of the life cycle.  Estrogen has a pervasive effect on body function 

in both males and females through a variety of mechanisms.  The action of BPA at ERα, ERß, 

estrogen related receptor (ERR), and the estrogen membrane receptor (mER) has been 

documented (Wetherill et al., 2007).  Epigenetic effects of BPA have also been demonstrated 

(Dolinoy et al., 2007; Prins et al., 2008).  Further, the estrogen receptor belongs to a large family 

of gene products, the nuclear steroid hormone receptor superfamily, which have some ligand 

cross reactivity.  This family of nuclear receptors is present in all known vertebrates (Thornton, 

2001).  For example, both estrogen and BPA bind to the thyroid receptor and antagonize the 

androgen receptor (Wetherill et al., 2007).   

Some consideration should be given to the relevance of the findings in laboratory animals 

(mostly mice and rats) to marine life.  As an estrogenic agent, BPA is thought to act through the 

estrogen receptor (ER).  Invertebrates have a variant ER (based on DNA sequencing), which 

does not however, bind estrogen.  Simpler animals, including the metazoan trichoplax have DNA 

coding for a protein similar to ER, termed the estrogen related receptor (ERR), which also does 

not bind estrogen (Baker, 2008).  BPA binding to the invertebrate ER and the ERR has not been 

determined.  Information on evolution and DNA sequencing cannot provide specific predictions 

about BPA toxicity in marine life based on rodent toxicology.  Perhaps a more reliable source of 

prediction is the general concordance between reproductive toxicity of chemicals in humans and 
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wildlife as discussed in the endocrine disruption literature (Colborn, 1994; Hotchkiss et al., 

2008). 

 

Laboratory Rodent Studies 

Laboratory mice and rats are the most commonly used biomedical rodent models for studying 

potential BPA human health effects.  Three issues have emerged as important in interpreting this 

literature: (1) mouse and rat strains differ in their sensitivity to various effects of estrogenic 

agents; (2) severity of effect does not always increase with dose and qualitative differences 

emerge along the dose-response continuum; (3) the laboratory environment may contain other 

estrogenic agents (in feed, water, caging and bedding) that need to be taken into account.  A 

major discussion in the literature and regulatory programs centers around the occurrence of BPA 

effects at doses < 5 mg/kg/d (low dose effects) which are not seen at greater severity/incidence at 

higher doses (National Toxicology Program, 2001).  More commonly, toxic effects seen at low 

doses persist and are magnified at higher doses.  Scientific information relevant to this discussion 

continues to develop.  Thus, extrapolation of the animal studies to the effects of human 

exposures, or exposures in the aquatic environment, requires careful review of this extensive 

literature as well as continuing update of the database.   

A number of hypotheses have been generated and tested, and a literature with more than1200 

articles has accumulated primarily over the past 10 years.  Effects that have been identified in 

some laboratory animal models and subsequently studied in greater depth are outlined in Table 4.  

These studies have been summarized by a panel of scientists active in this research area (Richter 

et al., 2007a) as well as by private and governmental agencies (CERHR, 2007; Health Canada, 

2008; Willhite et al., 2008).  This overview of the literature relied in part on these summaries.   
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Table 4.  Developmental and reproductive endpoints affected by BPA.  A brief description of 

the types of effect seen in studies which found BPA effects is provided.  Studies that examined 

the endpoint but did not find BPA effects are also cited.  These studies do not necessarily 

contradict the studies with findings due to differences in size and conduct of the studies.   

 

Endpoint Models* Effect Citation 

Genital 

differentiation; 

anogenital 

distance 

Mice, rats, 

developmental 

oral, injection 

Increase, 

decrease or no 

effect  

 

(Ema et al., 2001; Gross, 2007; Gupta, 

2000; Honma et al., 2002; Howdeshell 

et al., 2008; Kobayashi et al., 2003; 

Kobayashi et al., 2002b; Takagi et al., 

2004; Tinwell et al., 2002; Tyl et al., 

2008; Tyl et al., 2002) 

Prostate gland 

development 

Mice, rats 

developmental, 

adult,  

Oral, injection 

Increased adult 

prostate size 

and altered gene 

expression 

 

(Ashby et al., 1999; Cagen et al., 

1999a; Cagen et al., 1999b; Chitra et 

al., 2003a; Elswick et al., 2000; Gupta, 

2000; Herath et al., 2004; Ho et al., 

2006; Nagao et al., 2002; Nagel et al., 

1997; Nishino et al., 2004; Ramos et 

al., 2003; Ramos et al., 2001; Richter 

et al., 2007b; Takahashi and Oishi, 

2003; Talsness and Chahoud, 2000; 

Timms et al., 2005; Welshons et al., 

1999; Yoshino et al., 2002) 

Mammary gland  Mice, rats, 

developmental, 

gavage, 

injection, 

minipump 

Enhanced 

growth and 

differentiation 

 

(Colerangle and Roy, 1997; Durando 

et al., 2007; Markey et al., 2001; 

Moral et al., 2008; Muñoz-de-Toro et 

al., 2005; Murray et al., 2007; Nikaido 

et al., 2004; Vandenberg et al., 2007) 

Spermatogenesis Mice, rats, 

developmental, 

adult, oral, 

injection 

Reduced sperm 

number, 

morphology, 

motility 

 

(Aikawa et al., 2004; Al-Hiyasat et al., 

2002; Ashby et al., 2003; Chitra et al., 

2003a; Chitra et al., 2003b; Ema et al., 

2001; Herath et al., 2004; Howdeshell 

et al., 2008; Kato et al., 2006; Sakaue 

et al., 2001; Takahashi and Oishi, 

2001; Takahashi and Oishi, 2003; 

Tinwell et al., 2002; Toyama et al., 

2004; Toyama and Yuasa, 2004; Tyl 

et al., 2008; Yoshino et al., 2002) 

Reproductive 

hormones 

Mice, rats, 

developmental, 

oral, injection 

Lower 

testosterone  

 

(Akingbemi et al., 2004; Della Seta et 

al., 2006; Kawai et al., 2003; 

Kobayashi et al., 2002a; Saito et al., 

2003; Takao et al., 1999; Tanaka et 

al., 2006; Tanaka et al., 2001; 

Watanabe et al., 2003) 
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Endpoint Models* Effect Citation 

Estrous cycling Mice, rats, 

developmental, 

oral injection, 

minipump  

Disrupted/delay

ed estrous 

cycles 

 

(Ema et al., 2001; Kato et al., 2003; 

Nikaido et al., 2005; Nikaido et al., 

2004; Rubin et al., 2006; Ryan and 

Vandenbergh, 2006; Tyl et al., 2008; 

Tyl et al., 2002) 

Reproductive 

behavior 

Mice, rats, 

developmental, 

adult, oral 

Fewer mating 

behaviors 

 

(Farabollini et al., 2002; Funabashi et 

al., 2003; Ryan and Vandenbergh, 

2006; Welsch et al., 2000) 

Less maternal 

behavior 

(Della Seta et al., 2005; Palanza et al., 

2002) 

Aggression Mice, rats, 

developmental, 

oral, injection 

More 

aggression 

 

(Farabollini et al., 2002; Kawai et al., 

2003; Patisaul and Bateman, 2008; 

Patisaul et al., 2006)  

Sex-

differentiation of 

the brain and 

behavior 

Rats, 

developmental, 

oral, injection 

Less sex 

differentiation 

 

(Aloisi et al., 2002; Carr et al., 2003; 

Fujimoto et al., 2006; Kubo et al., 

2001; Kubo et al., 2003; Kwon et al., 

2000; Patisaul and Bateman, 2008; 

Patisaul et al., 2006; Patisaul et al., 

2007) 

Growth and 

growth 

regulation 

Mice, rats, 

developmental, 

oral, 

minipump, in 

vitro 

Acceleration of 

growth 

 

(Howdeshell et al., 1999; Howdeshell 

and vom Saal, 2000; Miyawaki et al., 

2007; Morrissey et al., 1989; Rubin et 

al., 2001; Takai et al., 2001) 

Puberty onset Mice, rats, 

developmental, 

oral, injection 

Early in 

females, late in 

males  

 

(Durando et al., 2007; Honma et al., 

2002; Howdeshell et al., 2006; 

Howdeshell and vom Saal, 2000; Kato 

et al., 2003; Nikaido et al., 2004; Ryan 

and Vandenbergh, 2006; Tinwell et 

al., 2002; Tyl et al., 2008; Tyl et al., 

2002) 

*  species, time of exposure (developmental, adult), route of exposure 

 

As is the case for aquatic organisms (see section on ―Reproductive and Endocrine Toxicity‖ 

under ―Toxicology:  Marine and Other Aquatic Organisms‖), sexual differentiation has been a 

major topic of research in laboratory animals.  After the period of organogenesis, sexual 

differentiation of the brain and the reproductive tract occurs in many birds and mammals under 

the influence of the hormones produced in the gonads (ovaries or testes).  Exogenous hormones 

and synthetic chemicals that interact with the endocrine system are known to alter this process 

(Wilson et al., 2007).  In the brain, sexual differentiation in terms of size, cell number and 

expression of relevant neurotransmitters and hormone releasing factors has been shown to be 

affected by developmental exposure to BPA.  Externally, the genitalia differentiate in terms of 

anogenital distance, testes descent, and later vaginal opening and preputial separation at puberty.  

While no studies have shown that BPA can completely transform morphological gender identity, 
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mating behavior, maternal behavior and sex-differentiated emotional and cognitive behavior are 

endpoints influenced by developmental BPA exposure.  In addition, quantitative changes in 

morphological indices like anogenital distance have been demonstrated.  Finally, timing of 

puberty, as reflected in morphological markers such as vaginal opening in females, has been 

reported to be affected by BPA.     

Of particular interest has been the development of the prostate and mammary glands, secretory 

organs of the reproductive system.  The prostate produces and excretes a portion of the seminal 

fluid while the mammary gland produces milk during lactation.  Both structures grow and 

differentiate under the influence of gonadal hormones fully maturing around the time of puberty.  

The effect of BPA on mammary glands can be characterized as enhanced development relative to 

same age controls and has been demonstrated after in utero exposures.  In the prostate gland, 

development is also stimulated by in utero BPA in terms of prostate weight as well as duct 

structure.   

In addition to an emphasis in the scientific literature on reproductive tract development, studies 

screening for general effects on fertility and pregnancy outcome have been conducted using 

government guidelines (FIFRA FDA).  Developmental toxicity studies (examining term fetuses 

after exposure during organogenesis) are rare (Hardin et al., 1981; Kim et al., 2001; Morrissey et 

al., 1987) but did not report an increased incidence of skeletal malformations.  There are also 

multigeneration studies in which parents and offspring are continually dosed over several 

generations (Ema et al., 2001; Tyl et al., 2008; Tyl et al., 2002).  These studies have not reported 

effects on fertility.  Using another study design (continuous breeding) in mice, fertility was not 

affected but fewer litters were seen with BPA treatment (Morrissey et al., 1989).  Effects on 

implantation, resorption and intrauterine growth retardation (Hardin et al., 1981; Morrissey et al., 

1987; Morrissey et al., 1989) were reported at the higher doses levels.  Other studies have also 

reported effects on implantation and resorption (Al-Hiyasat et al., 2002; Berger et al., 2007).  

Postnatal growth retardation was also observed in the multigeneration studies as well as in 

hypothesis testing studies (Matsumoto et al., 2004; Negishi et al., 2003b; Takagi et al., 2004).  

Growth retardation is a sensitive index of disruption of reproductive and developmental 

processes.  Adult female laboratory rodents exposed to BPA, via injection and oral routes, also 

show some reproductive system alterations (Table 5a).  Commonly reported effects of BPA on 

the adult female reproductive system include an increase in uterine weight, and changes in 

uterine and vaginal epithelium, changes that are often used as indices of estrogenic action. 

 

Table 5a:  Effects of subchronic/chronic exposure of adults to BPA on female reproductive 

parameters 

 

Endpoint Model Effect Citations 

Uterus Swiss mice, 

Alpk:APfSD (Wistar 

derived) rats, 

Crj:CD(SD) rats, Long 

Evans rats, Sprague-

Dawley rats 

↑ uterine weight (Al-Hiyasat et al., 2004; 

Ashby et al., 2000; Ashby 

and Tinwell, 1998; Dodge 

et al., 1996; Freyberger et 

al., 2002; Yamasaki et al., 

2000) 

Hypertrophy of epithelial, 

stromal, and myometrial cells 

(Freyberger et al., 2002) 
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Endpoint Model Effect Citations 

Uterotrophic response (Laws et al., 2000) 

Vagina Alpk:APfSD (Wistar 

derived) rats, Long 

Evans rats 

Hypertrophic cells (Freyberger et al., 2002)  

↑ % vaginal cornified cells (Ashby et al., 2000) 

No change in cytology (Laws et al., 2000) 

Estrous 

Cyclicity 

Crj:CD (SD) IGs rats, 

Sprague-Dawley rats 

No changes in F0 generation (Ema et al., 2001; Tyl et 

al., 2002) 

Fertility Crj:CD (SD) IGs rats, 

Sprague-Dawley rats 

No changes in F0 generation (Ema et al., 2001; Tyl et 

al., 2002) 

Mating Sprague-Dawley rats No changes in F0 generation (Tyl et al., 2002) 

Pregnancy Swiss mice, Sprague-

Dawley rats 

↑ in total # of resorptions (Al-Hiyasat et al., 2004)  

No changes in F0 generation (Tyl et al., 2002) 

Gestation 

Length 

Sprague-Dawley rats No changes in F0 generation (Tyl et al., 2002) 

Estrogen 

Receptor 

Pregnant/lactating or 

estrous cycling rats 

↓ ER-immunoreactive cells in 

the brain of lactating females 

compared with non-lactating 

(Aloisi et al., 2001) 

 

Like female laboratory rodents, adult male laboratory rats and mice exposed to BPA show 

alterations in their reproductive system.  Commonly examined endpoints include the testes, 

epididymis, prostate, and seminal vesicle (Table 5b).  

 

Table 5b:  Effects of subchronic/ chronic exposure of adults to BPA on male reproductive 

parameters  

 

Endpoint Model Effect Citation 

Testis Wistar rats, Sprague-

Dawley rats, Crj: CD-1 

mice; Swiss mice 

↓ testis weight (Al-Hiyasat et al., 2002; 

Chitra et al., 2003b; 

Takahashi and Oishi, 

2001) 

No histological 

alterations 

(Sakaue et al., 2001) 

↑ testis weight (Takahashi and Oishi, 

2001) 

No change in weight (Ashby et al., 2003; Tyl 

et al., 2002) 

Epididymis Crj: CD-1 mice, Wistar 

rats, Sprague-Dawley 

↓ epididymal weight (Chitra et al., 2003b; 

Takahashi and Oishi, 

2001) 

No change in weight (Ashby et al., 2003; Tyl 

et al., 2002) 

Prostate Sprague-Dawley No change in weight (Ashby et al., 2003) 

Seminal Vesicle Sprague-Dawley; No change in weight (Ashby et al., 2003) 
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Endpoint Model Effect Citation 

Swiss mice ↓ in weight (Al-Hiyasat et al., 2002) 

Sperm / 

Spermatogenesis 

Sprague-Dawley rats; 

Crj:CD(SD) IGS rats; 

Swiss mice; ICR mice; 

Wistar rats, CD-1 mice 

No changes in daily 

sperm production 

(Ashby et al., 2003; 

Sakaue et al., 2001) 

No effect on sperm 

[concentration, motility, 

production, morphology] 

(Ema et al., 2001; Tyl et 

al., 2002) 

↓ testicular and 

epididymal sperm counts 

(Al-Hiyasat et al., 2002) 

↓ epididymal sperm 

counts in 3500 ppm 

BPA- treatment group 

(Tyl et al., 2008) 

Abnormal sperm 

morphology 

(Toyama et al., 2004) 

Testosterone 

Levels 

C57BL/6 mice ↓ plasma testosterone 

levels 

(Takao et al., 1999) 

 

The lowest effective doses of BPA in laboratory animal studies range from μg/kg/d to mg/kg/d, 

but depend on the endpoint, the species and strain, and the type of study.  This provides a caution 

that understanding of the biological system and conditions of exposure is critical to estimating 

the risk of adverse effects of this estrogenic agent, in laboratory animals and in extrapolating to 

marine organisms.  In addition the extrapolation of administered dose across species, particularly 

between mammals and other major classes, requires careful consideration. 

 

Human Studies 

Only three studies associating BPA exposure with reproductive and developmental outcomes in 

humans were identified for this review.  In a study of 77 women, higher serum BPA was found 

in women with a history of recurrent miscarriage than in controls (Sugiura-Ogasawara et al., 

2005).  In another study (Takeuchi et al., 2004) 19 women with polycystic ovary syndrome and 7 

obese women were found to have higher serum BPA than 19 controls.  Additionally, significant 

correlations were found between serum androgen measures and serum BPA.  Another report 

from the same group (Takeuchi and Tsutsumi, 2002) found higher serum BPA in males than in 

either normal women or women with polycystic ovary syndrome and confirmed the correlation 

with testosterone across groups.  A third study found lower concentrations of serum BPA in 

women with ―complex endometrial hyperplasia with malignant potential‖ as compared to 

controls with normal endometrium or with ―simple endometrial hyperplasia of a benign nature‖ 

(Hiroi et al., 2004). Once again these are associations and not sure how this will be linked with 

marine based outcomes. 

 

Summary 

Overall, data in laboratory animals show that exposure of males and females to BPA results in 

effects consistent with the estrogenic activity of BPA.  Commonly reported effects in the adult 

female rodent reproductive system include an increase in uterine weight, changes in the uterine 

and vaginal epithelium, accelerated mammary gland development, younger age at first estrus 
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cycle, and earlier (younger age) vaginal opening.  Having estrus cycles at a younger age coupled 

with younger age at time of vaginal opening are consistent with earlier pubertal onset.   In males, 

prostate gland development was stimulated in terms of prostate weight as well as duct structure.  

Effects were also seen on the testis, seminal vesicles, spermatogonia, and testosterone level.  

Endpoints influenced by developmental BPA exposure include sex-differentiated emotional and 

cognitive behavior.  Quantitative alterations such as anogenital distance and postnatal growth 

retardation have also been noted.   

Although the bulk of the literature available comprises toxicological studies in laboratory 

rodents, the findings may be indicative of potential effects in marine organisms.  BPA is 

―estrogenic‖ and may act through the estrogen receptor (ER).  Estrogen receptors or other 

members of this family of nuclear receptors are present in all known vertebrates.  Thus, 

terrestrial mammals and other vertebrates are likely to have several similarities with marine 

mammals and vertebrates, and effects in terrestrial species should be considered if sufficient 

empirical data in marine species is not available. 

Cancer 

Introduction 

The potential carcinogenicity of a chemical is always a concern when the chemical is 

manufactured and used in high volumes.  BPA has been investigated using the standard bioassay 

and though other studies. 

Laboratory Rodent Studies 

The National Toxicology Program (NTP) concluded from its analysis of data from a two-year 

carcinogenicity bioassay of BPA given orally to adult male and female mice and rats that ―there 

was no convincing evidence that bisphenol A was carcinogenic to F344 rats or B6C3F1 mice of 

either sex‖ (NTP, 1982).  Both male and female rats were fed diets containing 1,000 or 2,000 

ppm BPA.  Male mice were fed diets of 1,000 or 5,000 ppm BPA and female mice were given 

diets containing 5,000 or 10,0000 ppm BPA.   

However, studies finding a higher incidence of neoplasia following prenatal or early-in-life 

exposure of rodents to BPA have been published.  Neonatal male Sprague-Dawley rats were 

given subcutaneous injections containing 10 micrograms BPA per kg body weight in oil on 

postnatal days 1, 3 and 5.  Control rats were injected with oil alone on these days.  At 28 weeks, 

all animals were killed and prostate tissues were examined.  Prostatic intraepithelial neoplasia, a 

lesion interpreted as precancerous were seen in 100 percent of the BPA-treated animals 

compared with 11 percent of the control animals (Ho et al., 2006; Keri et al., 2007; Prins et al., 

2007; Prins et al., 2008).  Female offspring of Wistar rats given 25 micrograms BPA per kg body 

weight from day 8 of pregnancy to day 22 had a higher incidence of precancerous mammary 

gland lesions in response to a dose of N-nitroso-N-methylurea than did females born to mothers 

that were not given BPA during pregnancy (Durando et al., 2007).  However, BPA is genotoxic 

to mammalian cells.  Incubation with BPA results in the formation of DNA adducts and reactive 

oxygen species within cultured cells.  

BPA caused a ―slight‖ increase in the production of hydroxyl radicals in the rat brain (Obata and 

Kubota, 2000).  In a review of effects of chemicals on sulfotransferase activity, Wang and James 

(2006) identified BPA as a chemical that reduces the activity of phase 2 sulfotransferases (Wang 

and James, 2006).  Therefore, by reducing the acitiviy of sulfotransferase enzymes BPA has the 
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potential to alter certain hormone levels and to reduce the rate of detoxification of some 

carcinogens and other toxic chemicals.  

 

Effects in Cultured Mammalian Cells 

The concentration of BPA that inhibits DNA synthesis or protein synthesis by 50 percent in 

cultured BALB/3T3 cells was estimated to be between 10 and 100 micromoles/L (2.3 and 

23 mg/L) (Hanks et al., 1991).  BPA at a concentration of 0.5 mmoles/L (114 mg/L) was lethal to 

cultured rat hepatocytes.  Incubation of hepatocyte mitochondria with 114 mg/L BPA uncoupled 

adenosine triphosphate (ATP) synthesis from electron transport (Nakagawa and Tayama, 2000).  

Mouse Neuro2a cells and GC1 cells cultured in the presence of BPA produced reactive oxygen 

species.  Incubation in the presence of BPA above 11 mg/L caused a decrease in the amount of 

mitochondrial complex 1 (Ooe et al., 2005).  Incubation of human embryonic 293 cells with 

11 mg/L BPA for 24 hours decreased cell viability (Benachour et al., 2007).  

BPA produced chromosomal aberrations in Chinese hamster ovary (CHO) cells (Hilliard et al., 

1998).  Incubation of cell cultures with BPA resulted in the formation of DNA adducts.  

Bisphenol-o-quinone was isolated from cultured cells, and this oxidation product reacted with 

DNA to form two of the DNA adducts formed in cells cultured with BPA (Atkinson and Roy, 

1995). 

Dairkee et al. (2008) investigated the pattern of gene expression in epithelial and stromal cells 

from the breast contralateral to the one with cancer.  When cultured in the presence of BPA, 

there was an increase in expression of genes associated with deregulation of the cell cycle and of 

genes associated with resistance to apoptosis.  The level of expression of these genes was 

positively correlated with the aggressiveness of the breast cancer in the patient.  

Summary 

In a standard cancer bioassay, BPA was not considered carcinogenic in mice and rats given high 

daily doses.  However, there is some evidence that BPA may be carcinogenic to new born 

animals.  It has been shown that BPA can be genotoxic to mammalian cells in culture and intefer 

with some cellular precesses.  Further investigation is needed to determine what, if any, role 

BPA may have in carcinogenisis. 

Obesity 

Introduction 

Stemp-Morlock (2007) observed that the obesity rate has greatly increased over the past 20 

years.  An estimated one-third of U.S. adults are overweight and more than one-third of U.S. 

children are overweight or at risk for being overweight.  There is a strong association between 

obesity and a number of health issues such as diabetes, coronary heart disease, hypertension, and 

gall bladder disease.  Traditionally obesity has been viewed as a result of reduced physical 

activities and increased caloric intake.  Data from recent studies, however, suggest that exposure 

to chemicals that perturb the critical pathways in adipogenesis, lipid metabolism or energy 

balance could also initiate or exacerbate obesity.  BPA is one of the candidate chemicals that are 

now considered under the ―environmental obesogen‖ hypothesis (Grun and Blumberg, 2007; 

Wada et al., 2007). 
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The study of environmental obesogen is an outgrowth of endocrine disruptor research.  

Hormones are key players in the development and maintenance of adipose tissues.  In adults, sex 

steroids together with growth hormone have fat mobilizing properties (anti-adipogenic), whereas 

cortisol and insulin have lipogenic effects (Grun and Blumberg, 2007).  Major targets for 

estrogen action in adipocytes include the reduction in lipogenesis via direct inhibition of 

adipocyte lipoprotein lipase expression (Homma et al., 2000).  However, BPA is an example of a 

compound with ER agonist activity that behaves as an obesogen under specific conditions or 

when exposure occurs during sensitive developmental windows.   

Laboratory Rodent Studies 

Prenatal exposure of mice in range of 0.1 to 1.2 mg/kg-day of BPA led to significant weight gain 

(Rubin et al., 2001).  Miyawaki  et al. (2007) further demonstrated that exposure of mice to BPA 

from gestation day 10 to postnatal day 30 caused obesity and hyperlipidemia.  In females, the 

mean body weight increased by 13 percent in the low dose (LD) group and 11 percent in the high 

dose group compared with the control group.  The mean adipose tissue weight was higher by 132 

percent in the LD group, while this tissue weight in the high dose (HD) group was not 

significantly higher than the control group.  The mean cholesterol level was also higher by 33 

percent in the LD group and 17 percent in the HD group.  In males, the mean body weight and 

adipose tissue weight were higher by 22 percent and 59 percent, respectively, in the HD group 

compared to the control group; however, these weights in the LD group were not significantly 

higher.  It is interesting to note that BPA caused a non-monotonic, inverted-U-shaped dose 

response in female offspring, but a monotonic dose response in the male offspring.  A non-

monotonic dose response was also shown in rats (Seidlova-Wuttke et al., 2005).  Three-month 

old rats were ovariectomized and received 0, 33, or 333 µg/kg-day of BPA for three months.  

The paratibal fat depot, which is extremely sensitive to estrogen withdrawal (from ovariectomy), 

was measured.  The size of the fat depot was significantly higher in the LD group but not in the 

HD group compared to the control group.  

In vitro Studies  

In vitro, BPA stimulated the accumulation of triacylglycerol in 3T3-L1 preadipocytes and 

hepatocytes (Wada et al., 2007).  The lipid accumulation responses were time- and dose-

dependent.  Masuno et al. (2005) similarly observed that BPA increased the triacylglycerol 

content of 3T3-L1 cells, as well as increased the levels of lipoprotein lipase and adipocyte-

specific fatty acid binding protein mRNAs.  These findings indicate that BPA accelerated the 

terminal differentiation of 3T3-L1 cells into adipocytes.  Interestingly, Phrakonkham et al. 

(2008) found that BPA did not enhance triglyceride accumulation in 3T3-L1 preadipocytes, but 

increased the expression of adipocyte differentiation genes.  It was observed that BPA also 

enhanced glucose transport in adipocytes (Sakurai et al., 2004), which in turn may contribute to 

lipogenesis.  It appears that the enhanced glucose uptake was a result of the upregulation of 

GLUT4, an insulin-regulated glucose transporter found in adipose tissues. 

As discussed, insulin has a lipogenic effect.  Adachi et al. (2005) investigated and found that 

BPA promoted insulin secretion in rat pancreatic islets.  The authors pointed out that the insulin 

inducing effect could potentially cause hyperinsulinemia, resulting in obesity, exhaustion of 

pancreatic β-cells, and diabetes.  In another study, Alonso-Magdalena et al. (2005) demonstrated 

that BPA suppressed low-glucose-induced intracellular calcium oscillations in mouse pancreatic 

α-cells, the signal that triggers glucagon secretion.  Since glucagon has a lipolytic effect in 



 

 19 

adipose tissue, the suppression of glucagon releases via calcium modulation would contribute to 

lipid accumulation.  

Overall, it appears that BPA influences multiple biochemical processes that govern obesity.  

Mechanistic studies suggest that BPA, as a developmental obesogen, produce this effect via ER 

signaling and other pathways.  Upregulation of insulin from pancreatic β-cells appears to be 

mediated by ―traditional cytoplasmic/nuclear‖ ER (Adachi et al., 2005).  BPA is reportedly 

capable of binding competitively to ER β.  Addition of ICI 182780 (ICI), an ER blocker, 

significantly suppressed the observed insulin increases induced by BPA.  The regulation of 

glucagon from pancreatic α-cells, however, seems to be mediated by a ―non-classical membrane 

ER‖ (ncmER). The occurrence of a ncmER in the pancreas that was capable of mediating BPA 

actions was recently reviewed (Wetherill et al., 2007).  Using immunocytochemical and 

biochemical techniques, Alonso-Magdalena et al. (2005) identified the receptor used by BPA in 

modulating calcium oscillations and glucagons levels is likely to be the same ncmER discussed 

in Wetherill’s review article.  With respect to upregulation of GLUT4, the insulin-regulated 

glucose transporter found in adipose tissues, in enhanced glucose uptake in adipocytes, Sakurai 

et al. (2004) used ICI to showed that this BPA action was not mediated by ERs.  Because the 

increase in GLUT4 expression is positively associated with adipocyte differentiation 

(MacDougald and Lane, 1995) and the role of peroxisome proliferators-activated receptor-γ 

(PPAR-γ) in lipogenesis and adipose differentiation is well established (Kersten, 2002), the 

authors speculated that PPAR-γ may be involved in GLUT4 regulation.  Phrakonkham et al. 

(2008) took one step further to investigate whether BPA would affect adipogenic transcription 

factors and biomarkers such as CCAAT/enhancer binding proteins (C/EBPβ, C/EBPδ), and 

PPAR-γ in 3T3-L1 preadipocytes.  They confirmed that BPA upregulated the expression of these 

factors.   

Human Studies 

Human data on the relationship between BPA exposure and obesity are sparse.  Non-

occupational exposure to BPA in 20 women was investigated in Southeast Spain (Fernandez et 

al., 2007).  The mean age was 59.7 and the body mass index (BMI) was 31.9 kg/m
2
.  The BMI 

data were consistent with the finding by the European Protective Investigation into Cancer and 

Nutrition in 2002 that suggested these women were overweight.  BPA was detected in 55 percent 

of the adipose tissue samples.  In a Japanese study the investigators compared the serum levels of 

BPA between non-obese and obese women (Takeuchi et al., 2004).  Obesity was defined by a 

BMI equal to or greater than 25 kg/m
2
.  The non-obese group consisted of 19 women, with a 

mean age of 27.5 and BMI of 19.7; whereas the obese group consisted of seven women, with a 

mean age of 28.8 and BMI of 28.5.  Takeuchi et al. found that BPA serum levels were 

significantly higher in the obese group (P<0.05), demonstrating a positive association between 

BPA and obesity in this study. 

 

Summary 

While human data on the relationship between BPA exposure and obesity are sparse, they do 

demonstrate a positive association.  Under controlled experimental conditions, the rodent studies 

further establish the cause-effect relationship between BPA and obesity.  Mechanistic studies 

have added to the weight of this evidence.  Collectively, human and rodent data paint a picture 
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that BPA can potentially cause or contribute to human obesity, which in turn is a risk factor for 

diabetes, coronary heart disease, hypertension, and gall bladder disease. 

 

Thyroid 

Introduction 

Thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), have diverse functions.  

They are essential to brain development, influence growth via stimulation of growth hormone, 

and regulate basal metabolic rates, as well as lipid and carbohydrate metabolism (Greenspan and 

Gardner, 2003).  Environmental chemicals can disrupt TH functions by preventing the 

biosynthesis via the inhibition of iodide uptake or thyroid peroxidase activity, interfering with 

the activity of transthyretin that transports of THs to target tissues, increasing the metabolism via 

deiodinases and uridine diphosphate glucuronyltransferase, or perturbing the binding to thyroid 

hormone receptors (TRs) (Zoeller, 2007).  The resulting hypothyroidism or thyroid hormone 

dysregulations in adults may lead to fatigue, weight gain, weak pulse, cold intolerance, mental 

sluggishness, and depression.  Such dysregulation during the perinatal period, on the other hand, 

could cause cretinism in the affected person, which is characterized by having a short stature, 

poor motor skills, moderate to severe mental retardation. 

Laboratory Studies 

Using rat liver cells, Moriyama et al. (2002) demonstrated that BPA interacted with both TRα 

and TRβ in inhibiting T3 stimulated response.  The experimental findings led the authors to 

conclude that BPA could displace T3 from the TR and recruit a transcriptional repressor, 

resulting in gene suppression.  BPA can antagonize T3 action at the transcriptional level.  It 

should be noted that while some in vitro studies demonstrated that BPA is a TR antagonist 

(Kitamura et al., 2002; Kitamura et al., 2005; Moriyama et al., 2002), at least one study showed 

that BPA acts as an agonist (Ghisari and Bonefeld-Jorgensen, 2005).  An in vivo study conducted 

by Iwamuro et al.(2003) found that BPA reduced the rate of metamorphosis in Xenopus.  This 

finding seems to be consistent with the in vitro observation that BPA serves as a TR antagonist.  

However, mammalian studies suggest BPA’s mechanism of action is much more complex.  

Zoeller et al. (2005) reported that BPA increased serum T4 in rat pups but also increased the 

expression of the RC3 gene in the dentate gyrus, part of the hippocampal formation.  The 

investigators rationalized that the T4 increase was a result of BPA’s antagonist action, 

competitively displacing T4 from TRβ.  Because RC3 expression is directed by TRα, it was 

believed that BPA did not exert an antagonist action on TRα.  In a prenatal study of brain 

development in mice, Nakamura et al. (2006a) found that growth in the ventricular zone of the 

BPA-treated offspring was decreased, whereas in the cortical plate growth was increased.  In 

addition, the expression of TRα gene (and other genes) was significantly upregulated in the 

cortical area of the BPA-treated group.  The authors’ interpretation was that BPA affected 

cortical plate growth via the upregulation of the thyroid pathway.  In doing so, BPA might have 

disrupted normal neocortical development by accelerating neuronal differentiation and 

migration. 

Human Studies 

BPA has been found in serum of pregnant women, in amniotic fluid and in cord blood and 

placenta (Ikezuki et al., 2002; Schonfelder et al., 2002).  Exposure to BPA in utero could affect 

http://en.wikipedia.org/wiki/Hippocampal_formation
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TR and result in mental retardation and dwarfism similar to those caused by hypothyroidism 

during critical windows of development.  

Summary 

The resulting hypothyroidism or thyroid hormone dysregulations in adults may lead to fatigue, 

weight gain, weak pulse, cold intolerance, mental sluggishness, and depression.  Such 

dysregulation during the perinatal period, on the other hand, could cause cretinism in the affected 

person, which is characterized by having a short stature, poor motor skills, moderate to severe 

mental retardation.  There is some evidence that BPA can disrupt the function of thyroid 

hormones by blocking the hormone’s binding to its receptor. 

Immune System 

Introduction 

The immune system is our main defense mechanism against invading microorganisms or tumor 

growth.  Suppressing the immune system may weaken our defense capabilities.  Overstimulation 

of the immune system during an infection, however, can cause extensive collateral damages—

―spill-over‖ destruction of surrounding but otherwise healthy tissues that may prove fatal in 

some instances.  Dysregulation of the immune system in other situations may lead to 

autoimmunity—attacking ―one’s own tissues without cause or provocation.‖  

The immune system is under tight, complex regulation to ensure that it continues to function at 

the optimal range.  Existing data suggest that BPA could perturb this regulatory apparatus, 

leading to weakened defense capabilities or detrimental overstimulation of immune functions as 

an end result.  It appears that BPA can either act directly or indirectly via the neuroendocrine 

system to affect the immune system.  It has been known that both the thyroid and sex hormone 

neuroendocrine systems are‖ immunoregulators Berczi (1997), and it should not come as a 

surprise that BPA, which is known to disrupt thyroid and estrogen functions, can potentially 

impact the immune system.   

Against the above background, it should be intuitive that BPA, which is known to disrupt thyroid 

and estrogen functions, can potentially impact the immune system.  No literature was found on 

BPA’s effects on the human immune system.  Data from literature, however, indicate that current 

research focuses on the estrogenic effect of BPA on immune functions.  In an in vitro system, 

Yamashita et al. (2002) using immune cells from BALB/c mice demonstrated that BPA 

enhanced innate immune response by increasing cytokine production including tumor necrosis 

factor (TNF) and IL-1 in macrophages, and stimulated both T and B cells in adaptive responses.  

The authors used IL-2 and IFN-γ as markers for Th1 response and IL-4 for Th2 response, and 

found that BPA stimulated Th1 cells to produce IFN-γ and Th2 cells to express IL-4.  The 

authors concluded that BPA does not preferentially activate the Th1 or Th2 path.  In vivo, BPA 

also enhanced Th1 or Th2 response, depending on the doses administered (Jontell et al., 1995; 

Tian et al., 2003; Yoshino et al., 2003).  In addition, prenatal exposure to BPA was shown to 

augment both Th1 and Th2 responses in adulthood (Yoshino et al., 2004).  BPA’s effects on the 

immune system are discussed in more detail in the following sections. 

Innate Immune Function 

The innate immune system comprises the cells and mechanisms that defend the host from 

infection by other organisms, in a non-specific manner.  Macrophages produce tumor necrosis 
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factor-α (TNF-α) and nitric oxide (NO) as part of the innate defense against bacteria including 

bacterial endotoxin.  While TNF-α and NO play an important role in bacterial clearance, 

overproduction of these factors can be detrimental because of their cytotoxicity.  For example, 

NO produces detrimental effects by generating oxidative stress or nitrating proteins and genes.  

Thus, either underproduction or overproduction of these factors can be harmful.  Hong et al. 

(2004) showed that BPA enhanced NO production in lipopolysaccharide (LPS) induced 

macrophages in vitro.  Further, Goto et al. (2004) demonstrated that macrophages were required 

for BPA-induced stimulation of murine splenic T cells.  The data seem to suggest that enhanced 

T cell activities were a result of the modulation of macrophage cytokines by BPA.  This 

observation is in agreement of the finding of Yamashita et al. (2002) on macrophages.  In an in 

vitro system, Yamashita et al. using immune cells from BALB/c mice demonstrated that BPA 

enhanced innate immune response by increasing cytokine production including tumor necrosis 

factor (TNF) and IL-1 in macrophages. 

A series of experiments, however, suggest that BPA could compromise innate immune function 

by down-regulation of TNF-α and NO in macrophages.  The activation of the transcription factor 

NF-кB (Igarashi et al., 2006) and IFN-β promoter (Ohnishi et al., 2008) are essential for the 

production of TNF-α and NO.  Igarashi et al. and Ohnishi et al. demonstrated that BPA inhibited 

LPS-induced activation of NF-кB and IFN-β promoter.  Since LPS uses Toll-like receptors 

(TLR) to stimulate macrophages, the authors speculated that BPA may interfere with TLR 

signaling.  There are also data to suggest the involvement of ERs in BPA inhibition of LPS-

induced NO and/or TNF-α production (Kim and Jeong, 2003; Yoshitake et al., 2008).  Kim and 

Jeong (2003) especially showed that BPA inhibited LPS-induced TNF-α and NO synthesis via 

the decrease in the levels of TNF-α  and inducible nitric oxide synthase (iNOS) mRNA.  

Treatment of ICI, an ER antagonist, inhibited the suppressive effect of BPA. 

BPA also seems to have a negative effect on the recruitment of macrophages into tissues, which 

is an important process in innate host defense.  Monocyte chemoattractant protein-1 (MCP-1), a 

member of the chemokine family, plays a pivotal role in recruiting blood monocytes to become 

tissue macrophages during innate immune responses.  Various cells including fibroblast, vascular 

endothelial cells, smooth muscle cells, and macrophages produce MCP-1 in response to stimuli 

from LPS, IL-1 and TNF-α.  BPA was shown to decrease MCP-1 levels in a dose-dependent 

manner in human breast cancer cell line MCF-7 that express ER (Inadera et al., 2000). 

In summary, BPA may upregulate or down-regulate macrophage functions.  Either case could 

produce a harmful effect.  

Adaptive Immune Function 

The adaptive immune system is composed of highly specialized, systemic cells and processes 

that eliminate or prevent pathogenic infestation.  Data from in vitro studies of various cell lines 

and in vivo rodent studies demonstrated clearly that BPA can modulate adaptive immune 

functions.  Because humans and rodents have similar patterns of immune development (Holladay 

and Smialowicz, 2000), an inference can be drawn that BPA may also affect the human immune 

system.  The adaptive immunity works in concert with the innate immunity to protect the body 

against pathogens and tumors.  Interfering with the programming of the Th1 or Th2 pathway 

during development may have dire consequences—reduced ability to fight certain infections, 

allergy, or autoimmune disorder.  
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Various effects of BPA on Th1 and Th2 immune responses have been reported.  Most of these 

effects are significant; however, the data do not paint a consistent picture.  Sakazaki et al. (2002) 

observed the presence of ERα in mouse splenic lymphocytes and reported that BPA strongly 

suppressed LPS-induced B cell proliferation relative to concanavalin A (con A) induced T cell 

mitogenesis.  On the other hand, BPA greatly enhanced immunoglobin IgG2a antibodies and 

IFN-γ (indicators of Th1 or T cell response) and moderately increased IgG1 and IL-4 (indicators 

of Th2 or B cell response) in mice that were immunized with hen egg lysozyme (Yoshino et al., 

2003).  Prenatal exposure of mice to BPA also caused an up-regulation of Th1 and Th2 

responses in adulthood; however, the Th1 response was much more significant (Yoshino et al., 

2004). 

Tian et al.(2003b) reported that BPA selectively promoted the Th2 immune response in mice 

infected with Trichinella spiralis.  However, Youn et al. (2002) showed that after four weeks of 

treatment in male ICR mice, BPA induced prolactin production in spleen and caused a shift of 

cytokines from the Th2 to Th1 type.  Goto et al. (2007) also reported that exposure of BPA to 

mice via the oral route caused a shift of the Th2 cytokine profile to Th1.  BPA moderately 

reduced IL-4 levels but increased IFN-γ.  IgG2a, a representative of Th1 type antibody, was also 

augmented. 

Because BPA as a xenoestrogen can modify the Th1/Th2 ratio and estrogen appears to provide a 

link between Th1 or Th2 cytokines and systemic lupus erythematosus (SLE), several studies 

investigated the possible role of BPA in this autoimmune disease in a murine model.  Sawai et al. 

(2003) make several observations to build the association of estrogen and Th1 cytokines to SLE.  

SLE occurs at a ratio of more than 8:1 in females compared with males and commonly strikes in 

women during the childbearing years when circulating estrogen levels are highest.  Patients with 

SLE have ongoing interferon-α (IFN-α) production and serum IFN-α levels are correlated with 

both disease activity and severity (Ronnblom and Alm, 2003).  SLE is characterized by high 

levels of IgG autoantibodies and glomerulonephritis.  In the murine model, the isotype switching 

to IgG2a, which contributes to glomerulonephritis, is IFN-γ (a Th1 cytokine) dependent (Haas et 

al., 1997).  In the Sawai et al. study, the authors observed that BPA inhibited IFN-γ production 

and delayed proteinuria development.  The authors concluded that BPA acted in a protective 

manner in SLE-prone mice—it is likely that the decreased in IFN-γ levels contributed to a 

reduction in isotype switching to IgG2a, which in turn prolonged the symptom-free period.  On 

the other hand, Kudaeva et al. (2005) found that BPA caused a higher incidence of 

glomerulonephritis in their SLE model, suggesting that the disease is driven by Th2 cytokines 

instead.  As Miyake et al. (2002) observed the roles of Th1 and Th2 cytokines in the 

pathogenesis of SLE are still in debate.  Certain SLE patients have high levels of Th2 cytokines 

such as IL-4, IL-6, and IL-10, while other patients have high levels of Th1 cytokines such as 

IFN-γ. 

The pathogenesis of allergic diseases is associated with the up-regulation of allergen-specific 

IgE, which is driven by the Th2 path (Offit and Hackett, 2003).  Since BPA can affect the Th2 

and Th1 pathways, its role in modulating the levels of IgE have been investigated.  Lee et 

al.(2003) reported that BPA significantly enhanced IL-4 production in keyhole limpet 

hemocyanin-primed T helper (Th) cells in a concentration dependent manner.  They also showed 

that BPA in vivo significantly increased IL-4 production and IgE levels in sera of keyhole limpet 

hemocyanin-primed mice.  This suggests that BPA drove the Th2 path in up-regulating the IgE 

levels.  However, the findings of Alizadeh et al. (2006) disagree in part with those of Lee et al.  



 

 24 

Alizadeh et al. reported that BPA lowered the titer of IgE while enhancing the levels of IFN-γ 

and IgG2a.  They also observed that the IL-4 levels were unchanged.  This suggests that BPA 

modified the Th1 path in affecting the IgE levels.  However, Alizadeh et al. pointed out that the 

dose of BPA used in their study was higher than that used in the Lee et al. study.  Looking at 

BPA’s possible effect on allergy from a different angle, Ohshima et al. (2007) examined whether 

prenatal exposure to BPA would influence the acquisition of an allergic predisposition.  The 

investigators showed that offspring mice from the BPA treatment group, when challenged with 

ovalbumin (a food antigen), retained a higher antigen-specific T cell proliferation rate, had 

higher levels of ovalbumin-specific IgG1 and IgG2a, but failed to accumulate regulatory T cells.  

Ohshima et al. concluded that BPA may interfere with the development of oral tolerance and 

lead to the emergence of food allergies. 

Summary 

BPA appears to possess complex immuno-modulating effects.  It may stimulate or suppress the 

immune system.  It may also alter immune response pathways.  BPA’s immunosuppressive 

effects can potentially compromise our abilities to flight infections.  It is more difficult to 

interpret BPA’s immune-stimulative effects.  Existing data do not provide conclusive evidence 

that such stimulatory effects can predispose the affected individuals to autoimmunity or allergy. 

Nervous System 

Introduction 

BPA has both indirect and direct effects on the nevous system.  Since gonadal hormones in 

conjunction with other neurotrophins regulate cell death, neuronal migration neurogenesis, and 

neurotransmitter plasticity, BPA, in disrupting sex hormone functions, can affect brain 

development (Simerly, 2002).  In disrupting thyroid functions, BPA can also affect the 

development of the nervous system because thyroid hormones play an important role in prenatal 

and neonatal development of the brain (Porterfield and Hendrich, 1993).  Early hypothyroidism, 

for example, caused stunted dentritic growth in hippocampal CA3 neurons, resulting in cognitive 

effects including impaired memory, spatial perception, and attention problems (Schantz and 

Widholm, 2001).  In addition, BPA may directly cause neurodegeneration.  BPA was shown to 

produce oxidative stress and induce apoptosis in neuronal cells (Lin et al., 2006b).  Experimental 

data from literature indicate that BPA has a significant impact on the dopaminergic system and 

hippocampal associated cognitive functions, as well as having a neurodegenerative effect.  The 

following is a technical synopsis, detailing the effects of BPA on the nervous system. 

Dopaminergic System  

The phenotypic expression of behaviors is the outcome of interacting cortical neuronal networks 

that are modulated by subcortical components such as the cholinergic neurons of Myenert’s basal 

nucleus, dopaminergic neurons of the Ventral Tegmental Area (VTA), serotongeric neurons in 

the Raphe nuclei, norepinephrine neurons in the Locus Coeruleus, and histamine neurons in the 

posterior hypothalamus (Viggiano et al., 2003).  Though behaviors emerge from complex 

interactions, the dopamine systems are very important for the phenotypic expression of attention 

and reward.  It is recognized that the mesolimbic VTA and the nigrostriatal dopaminergic sytems 

are essential to reward-based learning, novelty-induced behavior, attention, and activity 

(Andersen and Teicher, 2000; Berridge and Robinson, 1998; Carlsson, 1993).  The dysfunction 

of dopaminergic systems has been associated with neuropsychiatric disorders such as 
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Parkinson’s disease, schizophrenia, attention deficit/hyperactivity (ADHD), and autism.  It is 

interesting to note that autism and ADHD have a commonality-- that both diseases cause effects 

on gross and fine motor skills as well as the impulsive driven behaviors.  Certain drugs used to 

treat schizophrenia and ADHD, for example, target the dopamine system.  Most of the anti-

psychotic medications for schizophrenia are dopamine receptor antagonists, whereas drugs for 

treating ADHD are usually psycho-stimulants that modify dopamine transmission (Viggiano et 

al., 2003).  Methylphenidate, which blocks dopamine re-uptake and effectively increases the 

synaptic concentration of dopamine, has been used to treat ADHD (Medscape, 2006).  Addictive 

drugs such as cocaine and amphetamine, on the other hand, create a ―reward‖ reinforced 

behavior by modifying the dopaminergic transmission of the VTA. 

Sex differences in striatal dopamine content or density of dopamine-1 and dopamine-2 (D1 and 

D2) receptors during development suggest that sex steroid hormones may mediate the 

development of dopamine systems in the brain (Andersen and Teicher, 2000; Ferretti et al., 

1992).  In adults, estrogen appears to be neuroprotective (Marx and Lieberman, 1998).  Prenatal 

―excess‖ exposure to estrogen seems to have an opposite effect than in adulthood.  That evidence 

was seen in psychotic patients prenatally exposed to diethylstilbestrol (DES) (Katz et al., 1987).  

On the other hand, Turner syndrome (XO), in which a missing X chromosome that causes an 

absence of estrogen during perinatal life, is associated with cognitive problems and psychosis 

(Bamrah and Mackay, 1989).   

Some evidence suggests that BPA can affect the dopaminergic systems via the endocrine 

mechanism.  Prenatal and neonatal exposure to BPA was shown to alter D1 receptor expression 

and density in male mice, which in turn led to the enhancement of D1 receptor-dependent 

rewarding effect induced by methamphetamine (Suzuki et al., 2003b).  Laviola et al. observed 

that BPA affected the development of the dopamine pathways in a sex-linked manner (2005).  

Prenatal exposure of mice to BPA appeared to have blunted the development of the 

dopaminergic ―reward‖ pathway in the female offspring (but not the male offspring).  The 

treated adult female offspring no longer displayed an amphetamine reinforced behavior. 

Because of the interest in BPA’s possible ADHD effect, much of the research deals with BPA 

and hyperactivity behaviors in experimental animals.  It is unclear whether the dopamine systems 

are hyper or hypofunctioning in ADHD.  Evidence that support the dopamine system 

hypofunctioning theory includes the use of methylphenidate, a dopamine re-uptake blocker, to 

ameliorate ADHD symptoms and the observation of induced hyperactivity by chemical produced 

lesions (dopamine deficits) in the striatum (Papa et al., 2000; Sagvolden et al., 1992).  On the 

other hand, the observation that many dopamine receptor knockout (KO) mice are hypoactive 

and that dopamine transporter KO mice are hyperactive seem to suggest that ADHD is related to 

dopamine system hyperfunctioning (Viggiano et al., 2003).  In the hypofunctioning model, one 

would expect to observe hyperactivity when dopamine hypofunctioning were created by the 

dopamine receptor knockout.  Instead, hypoactivity was observed.  Likewise, one would expect 

to observe hypoactivity when hyperfunctioning of the dopamine system were created by the 

dopamine transporter knockout in the hypofunctioning model.  Instead, hyperactivity was 

observed.  In all, the knockout experiments appear to support that ADHD is associated with the 

hyperfunctioning of the dopamine system.  Research data on BPA reflect these observations.  

They either support the hyperfunctioning theory or the hypofunctioning theory.  While further 

research is required to clarify the mechanism(s) of action of BPA on the dopamine system, it is 

clear that BPA adversely impacts the dopamine system in the animal model. 
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A series of studies demonstrated that prenatal and neonatal exposure to BPA upregulated 

activities of the dopamine system and produced hyperactivity or enhanced rewarding effects 

induced by drugs of abuse.  Suzuki et al.(2003b) showed that prenatal and neonatal exposure of 

mice to BPA caused upregulation of dopamine D1 receptors and produced hyperlocomotion and 

increased rewarding responses induced by methamphetamine.  In addition, BPA exposure 

produced a significant increase in levels of D1 mRNA.  In characterizing the window of 

vulnerability in development, Narita et al. (2007) demonstrated that exposure of mice to BPA 

during either organogenesis or lactation, but not implantation and parturition, significantly 

enhanced the morphine induced hyperactivity and rewarding effects.  Narita et al. further showed 

that exposure to BPA during organogenesis or lactation caused an upregulation of dopamine 

receptor function to activate G-protein, short for guanine binding proteins that function as 

"molecular switches‖ to regulate downstream processes, in the mouse limbic forebrain.  Mizuo et 

al. (2004a), on the other hand, found that dopamine D3 receptor-mediated G-protein activation 

was attenuated in mice exposed to BPA prenatally and neonatally.  D3 receptor activities 

contribute to the inhibitory modulation of D1 and D2 receptors (Mizuo et al., 2004b); thus the 

down-regulation of D3 receptors can be interpreted as an upregulation of the overall dopamine 

function.  In a rat model, Ishido et al. (2005) demonstrated that neonatal exposure to BPA caused 

significant hyperactivity at 4-5 weeks of age, and significantly decreased gene expression of 

dopamine transporter at eight weeks.  All these experimental data lend support to the BPA-

induced dopamine hyperfunctioning theory in ADHD.  

However, there are also data that support the BPA-induced dopamine hypofunctioning theory in 

ADHD.  Intracisternal administration of BPA to neonatal rats caused a deficit in dopamine 

neurons and a concomitant increase in motor activity (Ishido et al., 2004; Masuo et al., 2004).  

The effect of BPA on hyperactivity was dose-dependent when measured at 4-5 weeks.  The 

dopamine deficit was indicated by a decrease in tyrosine hydroxylase, an important enzyme in 

the synthesis of dopamine, immunoreactivity.  In a followup study, Ishido et al. (2007) 

demonstrated that oral administration of BPA to neonatal rats also caused hyperactivity and a 

significant reduction in tyrosine hydroxylase immunoreactivity.   

Without doubt, there will be continuing debates on BPA’s mechanisms of action on the 

dopamine systems.  However, it is important to underscore the adverse impact of BPA on 

dopamine pathways in animal models, and the implication of BPA as a factor in the pathogenesis 

of disorders such as ADHD. 

Hippocampus 

The hippocampus, which is a scrolled structure located in the medial temporal lobe of the brain, 

plays an important role in declarative memory (Eichenbaum, 2004; Molavi, 1977). The 

hippocampus consists of morphologically distinct areas including the dentate gyrus and Cornu 

Ammonis (CA) zones (of which CA1 and CA3 are the largest).  Declarative memory represents 

the ability to form memory of everyday facts and events through personal experiences that in 

turn help construct reality within consciousness.  Thus declarative memory is more than the 

filing and recalling isolated events; it involves a series of cognitive processes—associative 

representation, sequential organization and relational networking—in relating past experiences to 

current perceptions in the construct of new memories as learning.  The hippocampus files new 

memories, experiences, or learning as they occur, including spatial learning (Molavi, 1977; 

Schantz and Widholm, 2001). 
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Sex hormones play an important role in the hippocampus development, which is known to be a 

sexually dimorphic area in the brain (Goldstein et al., 2001; Tabibnia et al., 1999).  Differential 

programming in the hippocampus by sex hormones can be illustrated by the observation that men 

generally outperform women on tasks that require spatial skills  (Schantz and Widholm, 2001).  

As discussed, thyroid hormones are also important in the growth and maturation of the 

hippocampus.  There is a clear concern that BPA, which has been shown to disrupt estrogen and 

thyroid functions, can potentially impact hippocampal development and function.  The animal 

data summarized below suggest that BPA can adversely affect the hippocampus.  It is not well 

understood, however, if these effects are mediated by endocrine disruption during development 

of the hippocampus. 

In a mouse model, Miyagawa et al. (2007) measured learning behaviors and choline 

acetyltransferase (ChAT) in the hippocampus using 7-11 week old male mice that had been 

prenatally and neonatally exposed to BPA.  Immunohistochemical measurements demonstrated a 

dramatic decrease in levels of ChAT in both low and high dose treatment groups.  ChAT is an 

excellent biomarker to indicate the severity of memory loss because among the cholinergic 

parameters described for the brains of Alzheimer’s disease patients, the decrease in ChAT is 

most prominent (Bartus et al., 1982; Dutar et al., 1995).  Memory impairment by BPA was also 

shown in the step-through passive avoidance behavioral test.  In a Morris Water Maze study,  

Carr et al. (2003) investigated BPA’s effect on spatial learning.  Neonatal mice were exposed to 

BPA and testing was performed between postnatal days 34-37.  As expected, acquisition of maze 

performance was significantly better in control males than in control females.  However, this 

gender-dependent pattern of acquisition was abolished in the low-dose group.  This suggests that 

BPA has an effect on the development of this sexually dimorphic memory/learning center.  In a 

perinatal rat study, Xu et al. (2007) investigated the possible role of thyroid hormone in spatial 

learning.  Significant sex difference on behaviors was observed, as indicated by impaired spatial 

learning/memory in male pups after matured.  They also found male rats to exhibit a transient 

hyperthyroidism followed by hypothyroidism.  However the expression of thyroid hormone 

receptors and receptor responsive element in the developing hippocampus were not affected by 

BPA.  Thus the involvement of thyroid hormone in this case remains equivocal.  In another rat 

model, MacLusky et al. (2005) demonstrated that treatment of ovariectomized females with BPA 

dose-dependently inhibited the estrogen-induced formation of CA1 pyramidal cell dentritic spine 

synapses.  The implication is that BPA exposure may interfere with the development and 

expression of normal sex differences in cognitive function, via inhibition of estrogen-dependent 

hippocampal synapse formation.  Ogiue-Ikeda et al. (2008) investigated the rapid modulation of 

synaptic plasticity in adult male rat hippocampus.  BPA was shown to significantly enhance 

long-term depression (LTD) in both CA1 and CA3 but suppressed LTD in the dentate gyrus of 

the hippocampus.  In memory processing, both long-term potentiation (LTP) and LTD are 

essential.  LTD may be a mechanism used to correct wrong memories formed by LTP.  

Neuronal Apoptosis 

Programmed apoptosis is a part of the maturation process that is essential for brain development.  

However, ―unscheduled‖ apoptosis leads to neurodegeneration.  Estrogen has been suggested to 

protect against neurodegeneration (Birge, 1997; Tang et al., 1996).  In postmenopausal women 

who have decreased estrogen levels, the risk of Alzheimer’s disease tends to increase, and 

replacement therapy with Tamoxifen reduces the risk.  Tamoxifen appears to induce glutathione 

peroxidase, catalase, and superoxide dimutase in post menopausal women, and inhibit lipid 
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peroxidation (Thangaraju et al., 1994).  Accordingly it is expected that tamoxifen would reduce 

oxidative stress associated with neuronal apoptosis.   

As a xenoestrogen, BPA may have both anti-apoptotic and apoptotic properties.  BPA was 

shown to increase hydroxyl radical formation in the rat striatum (Obata and Kubota, 2000), and 

enhance hydroxyl radical formation induced by 1-methyl-4-phenylpyridinium ion (MPP+) 

(Obata, 2006), known to cause neurodegeneration of the substantia nigra and produce acute 

Parkinsonian symptoms.  More direct evidence on BPA’s apoptotic property comes from the 

following studies.  BPA was shown to increase intracellular reactive oxygen species and induce 

apoptosis in mesencephalic neuronal cell culture (Lin et al., 2006a).  Lee et al. (2007) 

demonstrated that BPA increased apoptosis in PC12 cells and cortical neuronal cells.  The BPA 

effect seems to be ER independent because ER antagonists, ICI and tamoxifen, did not block the 

apoptotic effect.  Oka et al. (2003) further observed that BPA induces apoptosis in central neural 

cells during early Xenopus development and this effect appeared to be due to non-estrogenic 

activity on the developmental process.  In studying hippocampal and cortical neurons, Negishi et 

al. (2003a), however, showed that BPA significantly inhibited the staurosporine-induced increase 

in caspase-3 activities.  Their interruption was that BPA in such action may impede normal brain 

development by inhibiting desirable neuronal cell death via interference with caspase activities.  

 

Summary 

The implication of BPA’s apoptotic property is that exposure to BPA may cause premature 

neuronal cell death.  In that vein, BPA may be a risk factor for a wide range of 

neurodegenerative diseases.  Laboratory animal data also suggest that BPA can specifically 

affect the dopamine system and hippocampus.  Since the dysfunction of dopaminergic systems 

has been associated with neuropsychiatric disorders such as attention deficit/hyperactivity and 

autism, the concern is that BPA may be a factor in the pathogenesis of such disorders.  Adverse 

impacts of BPA on the hippocampus, on the other hand, would compromise memory and 

learning.  While these neurological studies provide some evidence that BPA has the potential to 

indirectly or directly affect the nervous system, much further research is needed. 

Conclusions 

Findings 

This toxicological profile on BPA describes its effects on freshwater and marine life, humans, 

and laboratory animals. 

 Most of the environmental concentration data are from fresh water systems.  It would be 

useful to gather data on BPA prevalence in marine environments, especially near 

municipal and industrial outfalls, landfills, and other possible point sources of BPA. 

 Most studies on the toxic effects of BPA on fresh water and marine organisms are short-

term laboratory studies involving a single species.  BPA induces endocrine 

manifestations, malformations, changes in growth, chromosomal damage, biochemical 

changes and, at sufficiently high concentrations, mortality.  Adverse effects in benthic 

organisms have not been well studied.  Benthic (sediment-dwelling) organisms are likely 

to receive much higher exposures, since BPA concentrations are higher in sediment than 

in the water column.  The potential for adverse effects at lower aqueous concentrations 

when the exposure is longer-term and/or via the food web remain largely unexplored.   
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 Most of the effects identified at the lowest environmental concentrations are reproductive 

effects; there are adequate data to support the conclusion that BPA is a reproductive 

toxicant in the aquatic environment.   

 Data in laboratory rodents show that exposure of males and females to BPA results in 

effects consistent with the estrogenic activity of BPA and likely acts through the estrogen 

receptor (ER).  Estrogen receptors or other members of this family of nuclear receptors 

are present in all known vertebrates.  Reported effects in the adult female rodent 

reproductive system include an increase in uterine weight, changes in the uterine and 

vaginal epithelium, accelerated mammary gland development, younger age at first estrus 

cycle, and earlier (younger age) vaginal opening.  In males, prostate gland development 

was stimulated in terms of prostate weight as well as duct structure.  Effects were also 

seen on the testis, seminal vesicles, spermatogonia, and testosterone level.  Although the 

bulk of the literature available comprises toxicological studies in laboratory rodents, the 

findings may be indicative of potential effects in marine organisms.   

 BPA was not considered carcinogenic in mice and rats given high daily doses.  However, 

other studies still raise questions.  Further investigation is needed to determine what, if 

any, role BPA may have in carcinogenisis. 

 There is some evidence that BPA can disrupt the function of thyroid hormones by 

blocking the hormone’s binding to its receptor. 

 BPA appears to possess complex immuno-modulating effects.  It may stimulate or 

suppress the immune system.  Its immunosuppressive effects can potentially compromise 

an organism’s abilities to flight infections.  It is more difficult to interpret BPA’s 

immune-stimulative effects.   

 Laboratory animal data also suggest that BPA can specifically affect the dopamine 

system and hippocampus.  While these neurological studies provide some evidence that 

BPA has the potential to indirectly or directly affect the nervous system, much further 

research is needed. 

Data Gaps 

 BPA is found in the water at the discharge for certain industries and treatment/landfill 

waste facilities, but it was not determined if there is general contamination away from the 

sources. 

 The threat to aquatic life from the levels away from discharge sources are unknown. 

 It has not been determined whether sediment concentrations are a greater concern than 

the levels in the water column  

 While there are effects seen in animal studies, there is little evidence available and few 

studies of effects in humans. 

 Sufficient evidence exists to identify BPA as causing developmental and immunological 

effects possibly through action on the endocrine system at higher levels, but the effects at 

environmental levels are less clear. 
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Recommendations 

 Identify which aquatic species are most at risk to environmental BPA levels. 

 Develop a full toxicological assessment on BPA to determine an acceptable fresh water 

and marine exposure level. 

 Determine if environmental BPA concentrations, water and sediment, away from point 

and area sources are a threat to aquatic species. 
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Appendix 1:  Bisphenol A effects on aquatic organisms  
Might want to state (as in Tables 2 & 3) that this is largely based on Kang et al 2007a) 

Species BPA exposure Effect Reference 

Reproductive Effects 

 Goldfish (Carassius auratus)  1 μM for 8 days   Vitellogenin induction    (Suzuki et al., 2003a)   

Zebrafish (Danio rerio)    1000 μg/L for 3 weeks   Vitellogenin induction    (Van den Belt et al., 2003)  

 Swordtail  
 (Xiphophorus helleri) 

 2000 μg/L for 3 days   Vitellogenin mRNA expression    (Kwak et al., 2001)   
   2000 μg/L for 60 days   Induction of apoptosis in fish testis cells   

Fathead minnow  
(Pimephales promelas)   
 
 

119–205 μg/L for 2 weeks   Vitellogenin induction     (Brian et al., 2005)  

640 & 1280 μg/L for 43 days  
60 μg/L for 71 days Vitellogenin induction     

  (Sohoni et al., 2001) 
640 & 1280 μg/L for 164 days   

Inhibition of gonadal growth ♀ & ♂ 
↓ egg production & F1 hatchability 

 16–1280 μg/L for 164 days   Inhibition of spermatogenesis   

 Japanese Medaka   
(Oryzias latipes)   
 
 
 
 
 
 

 1820 μg/L for 60 days   Induction of testis–ova    Yokota et al., 2000   

10 μg/L 100 days post-hatch Induction of testis–ova    (Metcalfe et al., 2001)  

 837–3120 μg/L for 3 weeks   Induction of Vitellogenin  and testis–ova  (Kang et al., 2002)  

10 μg/L for 4 weeks  
100 μg/L for 2 weeks   Induction of female-specific proteins  (Kashiwada et al., 2002)   

 10 μM for 2 weeks    Reduced number of eggs and hatchings 
(Shioda and Wakabayashi, 
2000)  

 100–500 μg/L for 6 days   Choriogenin L mRNA  expression (Lee et al., 2002)  
   500 μg/L for 6 days   Choriogenin H mRNA expression 

 500 – 1000 μg/L 1-5 weeks  Increased serum vitelloginen 

(Tabata et al., 2004)  
 

500 - 1000 μg/L dichloroBPA  Increased serum vitelloginen 

 1000 μg/L for 5 weeks  Vitellogenin induction   

 Medaka (Oryzias latipes)    200 μg/L for 15 days    Embryo lesions/swim-up failure  Zha and Wang, 2006   

 Medaka    200 μg/L for 9 days    Embryonic deformity    (Pastva et al., 2001)  

 Brown trout  
(Salmo trutta f fario)     
  

 1.75–2.4 μg/L for 2 months 
Male:  ↓ sperm density & motility  
Female: delayed ovulation  

 (Lahnsteiner et al., 2005)  
 
  5 μg/L for 2 months Male: ↓semen mass  Female: No ovulation   

 Rainbow trout  (O mykiss)   70–500 μg/L for 6 & 12 days Vitellogenin induction    (Lindholst et al., 2000)  

Landlocked salmon (Salmo 
salar m. Sebago) yolk-sac fry   1000 μg/L at 6 days Yolk-sac edema & hemorrhages    (Honkanen et al., 2004)  

 Atlantic salmon (Salmo salar)     
25,000 or 125,000 μg/kg for 1 
week 

Induction of vitellogenin & eggshell zona 
radiata protein    (Arukwe et al., 2000)  
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Species BPA exposure Effect Reference 

 Guppy (Poecilia  reticulata)    274 & 549 μg/L for 21 days Reduction of total sperm counts    Haubruge et al., 2000   

 Turbot (Psetta maxima)     59 μg/L for 3 weeks 
Reduction of testosterone and  11-
ketotestosterone, but induction of estrone   (Labadie and Budzinski, 2006)  

  59 μg/L for 3 weeks ZRP induction   (Larsen et al., 2006) 

Cod (Gadus moruha)   59 μg/L for 3 weeks ZRP & Vitellogenin induction   (Larsen et al., 2006) 

 Bream (Abramis brama)  10–50 μM  Vitellogenin induction   (Rankouhi et al., 2004)  

African clawed frog   
(Xenopus laevis)     0.1 μM for 12 weeks Feminization (female phenotype)   (Kloas et al., 1999)  

 Xenopus laevis tadpole  0.01 or 0.1 μM for 120 days   Feminization (Levy et al., 2004)  

 Frog (Bombina  orientalis)     100,000 μg/kg body weight   Liver vitellogenin mRNA induction in males: (Gye and Kim, 2005)   

Caiman latirostris 140 mg/L @ 33°C Complete sex reversal (Stoker et al., 2003) 

 Mussel (Mytilus edulis)    50 μg/L for 3 weeks    Gonad resorption   
(Ortiz-Zarragoitia and 
Cajaraville, 2006)  

 Freshwater ramshorn snail   
(Marisa  cornuarietis)   
 
 
 
 

 1–100 μg/L for 5 mo    

♀:  enlarged accessory pallial sex  glands, 
↑ oocyte production.  
♂: ↓ ripe sperm in vesicula  seminalis   

  
(Oehlmann et al., 2000) 
  100 μg/L for 12 mo    Induction of imposex intensities   

0.05 & 1 μg/L (but not 0.1 
μg/L) for  6 months   Superfemales with oviduct malformations 

(Oehlmann et al., 2006)  
  0.1 - 1 μg/L for 5 months   

 Induction of egg &clutch production;   
 oviduct malformations 

Marine dogwhelk  
(Nucella lapillus) 
  

 1–100 μg/L for 5  months 
  

♀enlarged accessory pallial sex  glands 
and increased oocyte  production 
♂: reduction of penis length, prostate  
gland, & ripe sperm in vesicula seminalis 

(Oehlmann et al., 2000) 
  

 Mudsnail  
(Potamopyrgus antipodarum) 

30, 100, and 300 μg/kg dry 
sediment   

Induction of unshelled embryos and 
embryo production (Duft et al., 2003)  

 1–100 μg/L for  21–63 days    Induction of embryo production   (Jobling et al., 2003) 

 Copepod (Acartia  tonsa)   

0.2, 2 and 20 μg/L for 10 days 
(not statistically significant at 
0.2, and 2 μg/L) 

Induction of egg production, a measure of 
maturation of  female reproductive organs  (Andersen et al., 1999)   

Aquatic insect  
(Chironomus riparius) 

0.078–750 μg/L for 20 h   Delayed emergence of f2 males & females 

(Watts et al., 2001a) 
  10,400 μg/L for 20 h   

80% emergence of f1 generation; no egg 
hatching & no emergence in f2 generation 

Freshwater sponges (Eunapius 
fragilis & )Heteromyenia sp  16,000 μg/L for 6 days    Abnormal growth  (Hill et al., 2002)  

 80000 & 160,000 μg/L 6 days   Complete inhibition of germination   
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Species BPA exposure Effect Reference 

    

Hydra oligactis    
 
 

≥1000 μg/L for 35 days   Suppression of testis formation   

(Fukuhori et al., 2005) 
 
 

500 - 1000 μg/L for 35 days   Induction of asexual reproduction 

 500-3000 μg/L for 35 days   
Suppression of sexual reproduction (more 
severe at 500 - 1000 μg/L) 

    

    

Other Effects 

 Goldfish (Carassius auratus)  1 μM for 8 days   
Reduced plasma Ca level & calcitonin 
secretion.  (Suzuki et al., 2003a) 

Teleost Fish  (Coris  julis)    80,000 μg/L for 2 weeks   

Induction of binding levels of somatostatin 
receptor subtype 2    
Decreased levels of subtype 5   (Alo et al., 2005) 

Zebrafish  7.8 µg/L Decreased survival (Yeo and Kang, 2006) 

 Goldfish (Carassius auratus)  10 μM for 6 h   
Suppression of tartrate-resistant acid 
phosphatase & alkaline phosphatase b   (Suzuki and Hattori, 2003) 

Fathead minnow 
640 &1280 μg/L for 71-164 
days  Inhibition of somatic growth in male   (Sohoni et al., 2001) 

 Zebrafish   
10-20 μM for 72 h after 
fertilization 

 Upregulation of brain aromatase isoform 
(P450aromB) mRNA. Increased mortality.  
Increased incidence of curved tails    Kishida et al., 2001   

 Atlantic salmon (Salmo salar)      5000 μg/kg for 1 week 
Reduction of 7-ethoxyresorufin  O-
deethylase activity  (Arukwe et al., 2000) 

Landlocked salmon (Salmo 
salar m. Sebago) 100 & 1000 μg/L at 42 days  Stained fragments in hepatocyte nuclei    (Honkanen et al., 2004) 

 Turbot (Psetta maxima)     50 μg/L for 3 weeks   chromosomal damage in erythrocytes    Bolognesi et al., 2006   

 (Hermaphroditic fish  Rivulus 
marmoratus) 600 μg/L for 96 h  

Up-regulation of brain aromatoase  rm-
cyp19b and ovarian rm-cyp 19a   (Lee et al., 2006) 

 Xenopus laevis  embryo 
  

25–35 μM for 120 h  >75% mortality   

(Iwamuro et al., 2003) 
  

10–20 μM for 7 days post-
fertilization Scoliosis and malformation of the head  

 Xenopus laevis larvae    10–25 μM for 21 days   

Suppressed spontaneous & thyroxin 
induced metamorphosis.  
Suppressed thyroxin receptor β gene  
expression (Iwamuro et al., 2003) 

 Xenopus laevis  embryo   20 μM for stage 6–10   
 Malformation and apoptosis of central 
nervous system cells   (Oka et al., 2003) 
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Species BPA exposure Effect Reference 

 Xenopus laevis  embryo   
20 μM for 96 h after 
fertilization 

Mortality, short body length, microcephaly, 
flexure, edema, and abnormal gut coiling  (Oka et al., 2003) 

 European common  frog (Rana 
temporaria) embryo   

10–1000 μg/L for 20 days w/ 
or w/o ultraviolet-B 

 >90% mortality @ 10–1000 μg/L with UVB 
75% mortality at 1000 μg/L w/o UVB   (Koponen and Kukkonen, 

2002)  1000 μg/L for 10 da w/ UVB  100% developmental malformation   

 Black-spotted pond  frog (Rana  
nigromaculata) 

 200 μg/L for 45 days    Malformation of tail flexure   

 Yang et al., 2005    20 and 200 μg/L for 60 days    Induction of total thyroxine   

Tago’s brown frog  (Rana tagoi)     1 μM for 72 h   

 Inhibition of thyroid hormone activity by  
reducing expression of preprotemporin-
1TGb and 1Tga genes (Ohnuma et al., 2006) 

 Hydra vulgaris    >460 μg/L for 72 h   
Inhibition of regeneration in isolated 
digestive regions   (Pascoe et al., 2002)  

Apple snail (Marisa cornuarietis)  

 100 μg/L for 9 days    Reduction of heart rate   

(Schirling et al., 2006)  50 -100 μg/L for 11–13 days    Induction of weight of hatched individuals   

 Chironomus riparius    
 1000 μg/L for 2 days   Reduced wet weight.  Delayed moulting 

(Watts et al., 2001b ; 2003)  
 >0.01 μg/L for 2 days    Induction of mouthpart deformities   

Copepod (Acartia tonsa) 20 (nonsignificant effect @ 2) Accelerated egg production (Andersen et al., 1999) 

Copepod (Eurytemora affinis) 23 10 day survival nauplii (Forget-Leray et al., 2005) 

copepod (Tigriopus japonicus)  

Long-term exposure to 
 0.1, 1.0 and 10 µg/L 

F0 delayed completion of the naupliar 
stages  

(Marcial and Snell, as 
reviewed by (Crain et al., 
2007) 

Long-term exposure to  
0.01 µg/L and above 

F1 delayed completion of the naupliar 
stages  

Aquatic insect  
(Chironomus tentans) 8 ↑ HSP and HGB gene expression (Lee et al., 2006) 

periphyton 46  biomass AuC EC50 (Licht et al., 2004) 

 t1/2 in artificial stream 1 day   (Licht et al., 2004) 

Algae  1170 µg/L 96-hr NOEC 

Staples (1998) 

Daphnia  >3146 µg/L 21 day NOEC 

Daphnia  3900 - 20000 µg/L 48-hr LC50 

Marine Algae  1100 µg/L 96-hr EC50 

Mysid  1100 µg/L 96-hr LC50 

Fish  4600 - 15000 µg/L 48-96-hr LC50 

 



 

 

 


